CASL2TopSort.hs revision f96070d2a6e07d89906f7a1ed854e64437e3c47a
{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances #-}
{- |
Module : $Header$
Copyright : (c) Klaus Luettich, Uni Bremen 2002-2004
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
Coding out subsorting into unary predicates.
New concept for proving Ontologies.
generatedness via non-injective datatype constructors
(i.e. proper data constructors) is simply ignored
total functions my become partial because i.e. division is total
for a second non-zero argument but partial otherwise.
partial functions remain partial unless they fall to together
with an overloaded total function
-}
module Comorphisms.CASL2TopSort (CASL2TopSort (..)) where
import Data.Ord
import Data.Maybe
import Data.List
import Logic.Logic
import Logic.Comorphism
import Common.AS_Annotation
import Common.Id
import Common.ProofTree
import Common.Result
import qualified Common.Lib.Rel as Rel
import qualified Common.Lib.MapSet as MapSet
-- CASL
import CASL.Logic_CASL
import CASL.AS_Basic_CASL
import CASL.Fold
import CASL.Sign
import CASL.StaticAna (sortsOfArgs)
import CASL.Morphism
import CASL.Sublogic as SL
import qualified Data.Map as Map
import qualified Data.Set as Set
-- | The identity of the comorphism
data CASL2TopSort = CASL2TopSort deriving Show
instance Language CASL2TopSort where
language_name CASL2TopSort = "CASL2PCFOLTopSort"
instance Comorphism CASL2TopSort
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
Symbol RawSymbol ProofTree
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
Symbol RawSymbol ProofTree where
sourceLogic CASL2TopSort = CASL
sourceSublogic CASL2TopSort = SL.caslTop
{ sub_features = LocFilSub
, cons_features = emptyMapConsFeature }
targetLogic CASL2TopSort = CASL
mapSublogic CASL2TopSort sub =
if sub `isSubElem` sourceSublogic CASL2TopSort
then Just $
sub { sub_features = NoSub -- subsorting is coded out
, cons_features = NoSortGen -- special Sort_gen_ax is coded out
, which_logic = max Horn (which_logic sub)
, has_eq = True {- was in the original targetLogic
may be avoided through predications of sort-preds
with the result terms of functions instead of formulas like:
forall x : T . bot = x => a(x)
better: . a(bot) -}
, has_pred = True
, has_part = True }
{- subsorting is coded out and
special Sort_gen_ax are coded out -}
else Nothing
map_theory CASL2TopSort = mkTheoryMapping transSig transSen
map_morphism CASL2TopSort mor = do
let trSig = fmap fst . transSig
sigSour <- trSig $ msource mor
sigTarg <- trSig $ mtarget mor
return mor
{ msource = sigSour
, mtarget = sigTarg }
map_sentence CASL2TopSort = transSen
map_symbol CASL2TopSort _ = Set.singleton . id
has_model_expansion CASL2TopSort = True
data PredInfo = PredInfo { topSortPI :: SORT
, directSuperSortsPI :: Set.Set SORT
, predicatePI :: PRED_NAME
} deriving Show
type SubSortMap = Map.Map SORT PredInfo
generateSubSortMap :: Rel.Rel SORT -> PredMap -> SubSortMap
generateSubSortMap sortRels pMap =
let disAmbMap = Map.map disAmbPred
disAmbPred v = let pn = predicatePI v in
case dropWhile (`Set.member` MapSet.keysSet pMap)
$ pn : map (appendNumber (predicatePI v)) [1 ..] of
n : _ -> v { predicatePI = n }
[] -> error "generateSubSortMap"
mR = (Rel.flatSet .
Rel.partSet (\ x y -> Rel.member x y sortRels &&
Rel.member y x sortRels))
(Rel.mostRight sortRels)
toPredInfo k e =
let ts = case filter (flip (Rel.member k) sortRels)
$ Set.toList mR of
[x] -> x
_ -> error "CASL2TopSort.generateSubSortMap.toPredInfo"
in PredInfo { topSortPI = ts
, directSuperSortsPI = Set.difference e mR
, predicatePI = k }
initMap = Map.filterWithKey (\ k _ -> not $ Set.member k mR)
(Map.mapWithKey toPredInfo
(Rel.toMap (Rel.intransKernel sortRels)))
in disAmbMap initMap
{- | Finds Top-sort(s) and transforms for each top-sort all subsorts
into unary predicates. All predicates typed with subsorts are now
typed with the top-sort and axioms reflecting the typing are
generated. The operations are treated analogous. Axioms are
generated that each generated unary predicate must hold on at least
one element of the top-sort. -}
transSig :: Sign () e -> Result (Sign () e, [Named (FORMULA ())])
transSig sig = return
$ let sortRels = Rel.rmNullSets $ sortRel sig in
if Rel.nullKeys sortRels then (sig, []) else
let subSortMap = generateSubSortMap sortRels (predMap sig)
newOpMap = transOpMap sortRels subSortMap (opMap sig)
newAssOpMap0 = transOpMap sortRels subSortMap (assocOps sig)
axs = generateAxioms subSortMap (predMap sig) newOpMap
newPreds = foldr (\ pI -> MapSet.insert (predicatePI pI)
$ PredType [topSortPI pI])
newPredMap = MapSet.union (transPredMap subSortMap
$ predMap sig) $ newPreds subSortMap
in (sig
{ sortRel = Rel.fromKeysSet
$ Set.fromList (map topSortPI $ Map.elems subSortMap)
, opMap = newOpMap
, assocOps = interOpMapSet newAssOpMap0 newOpMap
, predMap = newPredMap
}, axs ++ symmetryAxioms subSortMap sortRels)
transPredMap :: SubSortMap -> PredMap -> PredMap
transPredMap subSortMap = MapSet.map transType
where transType t = t
{ predArgs = map (lkupTop subSortMap) $ predArgs t }
transOpMap :: Rel.Rel SORT -> SubSortMap -> OpMap -> OpMap
transOpMap sRel subSortMap = rmOrAddPartsMap True . MapSet.map transType
where
transType t =
let args = opArgs t
lkp = lkupTop subSortMap
newArgs = map lkp args
kd = opKind t
in -- make function partial if argument sorts are subsorts
t { opArgs = map lkp $ opArgs t
, opRes = lkp $ opRes t
, opKind = if kd == Total && and (zipWith
(\ a na -> a == na || Rel.member na a sRel)
args newArgs) then kd else Partial }
procOpMapping :: SubSortMap -> OP_NAME -> Set.Set OpType
-> [Named (FORMULA ())] -> [Named (FORMULA ())]
procOpMapping subSortMap opName =
(++) . Map.foldWithKey procProfMapOpMapping [] . mkProfMapOp subSortMap
where
procProfMapOpMapping :: [SORT] -> (OpKind, Set.Set [Maybe PRED_NAME])
-> [Named (FORMULA ())] -> [Named (FORMULA ())]
procProfMapOpMapping sl (kind, spl) = genArgRest
(genSenName "o" opName $ length sl) (genOpEquation kind opName) sl spl
mkSimpleQualPred :: PRED_NAME -> SORT -> PRED_SYMB
mkSimpleQualPred symS ts = mkQualPred symS $ Pred_type [ts] nullRange
symmetryAxioms :: SubSortMap -> Rel.Rel SORT -> [Named (FORMULA ())]
symmetryAxioms ssMap sortRels =
let symSets = Rel.sccOfClosure sortRels
toAxioms = concatMap
(\ s ->
let ts = lkupTop ssMap s
symS = lkupPred ssMap s
psy = mkSimpleQualPred symS ts
vd = mkVarDeclStr "x" ts
vt = toQualVar vd
in if ts == s then [] else
[makeNamed (show ts ++ "_symmetric_with_" ++ show symS)
$ mkForall [vd] $ mkPredication psy [vt]]
) . Set.toList
in concatMap toAxioms symSets
generateAxioms :: SubSortMap -> PredMap -> OpMap -> [Named (FORMULA ())]
generateAxioms subSortMap pMap oMap = hi_axs ++ p_axs ++ axs
where -- generate argument restrictions for operations
axs = Map.foldWithKey (procOpMapping subSortMap) []
$ MapSet.toMap oMap
p_axs =
-- generate argument restrictions for predicates
Map.foldWithKey (\ pName ->
(++) . Map.foldWithKey
(\ sl -> genArgRest
(genSenName "p" pName $ length sl)
(genPredication pName)
sl)
[] . mkProfMapPred subSortMap)
[] $ MapSet.toMap pMap
hi_axs =
{- generate subclass_of axioms derived from subsorts
and non-emptyness axioms -}
concatMap (\ prdInf ->
let ts = topSortPI prdInf
subS = predicatePI prdInf
set = directSuperSortsPI prdInf
supPreds = map (lkupPred subSortMap) $ Set.toList set
x = mkVarDeclStr "x" ts
mkPredf sS = mkPredication (mkSimpleQualPred sS ts)
[toQualVar x]
in makeNamed (show subS ++ "_non_empty")
(Quantification Existential [x] (mkPredf subS)
nullRange)
: map (\ supS ->
makeNamed (show subS ++ "_subclassOf_" ++ show supS)
$ mkForall [x]
$ mkImpl (mkPredf subS) $ mkPredf supS)
supPreds
) $ Map.elems subSortMap
mkProfMapPred :: SubSortMap -> Set.Set PredType
where seperate pt = MapSet.setInsert (pt2topSorts pt) (pt2preds pt)
pt2topSorts = map (lkupTop ssm) . predArgs
pt2preds = map (lkupPredM ssm) . predArgs
mkProfMapOp :: SubSortMap -> Set.Set OpType
where seperate ot =
Map.insertWith (\ (k1, s1) (k2, s2) ->
(min k1 k2, Set.union s1 s2))
(pt2topSorts joinedList)
(fKind, Set.singleton $ pt2preds joinedList)
where joinedList = opSorts ot
fKind = opKind ot
pt2topSorts = map (lkupTop ssm)
pt2preds = map (lkupPredM ssm)
lkupTop :: SubSortMap -> SORT -> SORT
lkupTop ssm s = maybe s topSortPI (Map.lookup s ssm)
lkupPredM :: SubSortMap -> SORT -> Maybe PRED_NAME
lkupPredM ssm s = fmap predicatePI $ Map.lookup s ssm
lkupPred :: SubSortMap -> SORT -> PRED_NAME
lkupPred ssm = fromMaybe (error "CASL2TopSort.lkupPred") . lkupPredM ssm
genArgRest :: String -> ([VAR_DECL] -> FORMULA f)
{- ^ generates from a list of variables
either the predication or function equation -}
-> [SORT] -> Set.Set [Maybe PRED_NAME]
-> [Named (FORMULA f)] -> [Named (FORMULA f)]
genArgRest sen_name genProp sl spl fs =
let vars = genVars sl
mquant = genQuantification (genProp vars) vars spl
in maybe fs (\ quant -> makeNamed sen_name quant : fs) mquant
genPredication :: PRED_NAME -> [VAR_DECL] -> FORMULA f
genPredication pName vars =
genPredAppl pName (map (\ (Var_decl _ s _) -> s) vars) $ map toQualVar vars
-- | generate a predication with qualified pred name
genPredAppl :: PRED_NAME -> [SORT] -> [TERM f] -> FORMULA f
genPredAppl pName sl terms = Predication (Qual_pred_name pName
(Pred_type sl nullRange) nullRange) terms nullRange
genOpEquation :: OpKind -> OP_NAME -> [VAR_DECL] -> FORMULA f
genOpEquation kind opName vars = case vars of
resV@(Var_decl _ s _) : argVs -> mkStEq opTerm resTerm
where opTerm = mkAppl (mkQualOp opName opType) argTerms
opType = Op_type kind argSorts s nullRange
argSorts = sortsOfArgs argVs
resTerm = toQualVar resV
argTerms = map toQualVar argVs
_ -> error "CASL2TopSort.genOpEquation: no result variable"
genVars :: [SORT] -> [VAR_DECL]
genVars = zipWith mkVarDeclStr varSymbs
where varSymbs =
map (: []) "xyzuwv" ++ map (\ i -> 'v' : show i) [(1 :: Int) ..]
genSenName :: Show a => String -> a -> Int -> String
genSenName suff symbName arity =
"arg_rest_" ++ show symbName ++ '_' : suff ++ '_' : show arity
genQuantification :: FORMULA f {- ^ either the predication or
function equation -}
-> [VAR_DECL] -- ^ Qual_vars
-> Set.Set [Maybe PRED_NAME]
-> Maybe (FORMULA f)
genQuantification prop vars spl = do
dis <- genDisjunction vars spl
return $ mkForall vars $ mkImpl prop dis
genDisjunction :: [VAR_DECL] -> Set.Set [Maybe PRED_NAME] -> Maybe (FORMULA f)
genDisjunction vars spn
| Set.size spn == 1 =
case disjs of
[] -> Nothing
[x] -> Just x
_ -> error "CASL2TopSort.genDisjunction: this cannot happen"
| null disjs = Nothing
| otherwise = Just (disjunct disjs)
where disjs = foldl genConjunction [] (Set.toList spn)
genConjunction acc pns
| null conjs = acc
| otherwise = conjunct (reverse conjs) : acc
where conjs = foldl genPred [] (zip vars pns)
genPred acc (v, mpn) = maybe acc
(\ pn -> genPredication pn [v] : acc) mpn
{- | Each membership test of a subsort is transformed to a predication
of the corresponding unary predicate. Variables quantified over a
subsort yield a premise to the quantified formula that the
corresponding predicate holds. All typings are adjusted according
to the subsortmap and sort generation constraints are translated to
disjointness axioms. -}
transSen :: Sign f e -> FORMULA f -> Result (FORMULA f)
transSen sig f = let sortRels = Rel.rmNullSets $ sortRel sig in
if Rel.noPairs sortRels then return f else do
let ssm = generateSubSortMap sortRels (predMap sig)
newOpMap = transOpMap sortRels ssm (opMap sig)
mapSen ssm newOpMap f
mapSen :: SubSortMap -> OpMap -> FORMULA f -> Result (FORMULA f)
mapSen ssMap opM f =
case f of
Sort_gen_ax cs _ ->
genEitherAxiom ssMap cs
_ -> return $ foldFormula (mapRec ssMap opM) f
mapRec :: SubSortMap -> OpMap -> Record f (FORMULA f) (TERM f)
mapRec ssM opM = (mapRecord id)
{ foldQuantification = \ _ q vdl ->
Quantification q (map updateVarDecls vdl) . relativize q vdl
, foldMembership = \ _ t s pl -> maybe (Membership t s pl)
(\ pn -> genPredAppl pn [lTop s] [t]) $ lPred s
, foldPredication = \ _ -> Predication . updatePRED_SYMB
, foldQual_var = \ _ v -> Qual_var v . lTop
, foldApplication = \ _ -> Application . updateOP_SYMB
, foldSorted_term = \ _ t1 -> Sorted_term t1 . lTop
-- casts are discarded due to missing subsorting
, foldCast = \ _ t1 _ _ -> t1 }
where lTop = lkupTop ssM
lPred = lkupPredM ssM
updateOP_SYMB (Op_name _) =
error "CASL2TopSort.mapTerm: got untyped application"
updateOP_SYMB (Qual_op_name on ot pl) =
Qual_op_name on (updateOP_TYPE on ot) pl
updateOP_TYPE on (Op_type _ sl s pl) =
let args = map lTop sl
res = lTop s
t1 = toOpType $ Op_type Total args res pl
ts = MapSet.lookup on opM
nK = if Set.member t1 ts then Total else Partial
in Op_type nK args res pl
updateVarDecls (Var_decl vl s pl) =
Var_decl vl (lTop s) pl
updatePRED_SYMB (Pred_name _) =
error "CASL2TopSort.mapSen: got untyped predication"
updatePRED_SYMB (Qual_pred_name pn (Pred_type sl pl') pl) =
Qual_pred_name pn
(Pred_type (map lTop sl) pl') pl
-- relativize quantifiers using predicates coding sorts
relativize q vdl f1 = let vPs = mkVarPreds vdl in
if null vdl then f1
else case q of -- universal? then use implication
Universal -> mkImpl vPs f1
-- existential or unique-existential? then use conjuction
_ -> conjunct [vPs, f1]
mkVarPreds = conjunct . map mkVarPred
mkVarPred (Var_decl vs s _) = conjunct $ foldr (mkVarPred1 s) [] vs
mkVarPred1 s v = case lPred s of
-- no subsort? then no relativization
Nothing -> id
Just p1 -> (genPredication p1 [mkVarDecl v $ lTop s] :)
genEitherAxiom :: SubSortMap -> [Constraint] -> Result (FORMULA f)
genEitherAxiom ssMap =
genConjunction . (\ (_, osl, _) -> osl) . recover_Sort_gen_ax
where genConjunction osl =
let (injOps, constrs) = partition isInjOp osl
groupedInjOps = groupBy sameTarget $ sortBy compTarget injOps
in if null constrs
then case groupedInjOps of
[] -> fatal_error "No injective operation found" nullRange
[xs@(x : _)] -> return $ genQuant x $ genImpl xs
((x : _) : _) -> return $ genQuant x
$ conjunct $ map genImpl groupedInjOps
_ -> error "CASL2TopSort.genEitherAxiom.groupedInjOps"
else Result [mkDiag Hint
"ignoring generating constructors"
constrs]
$ Just trueForm
isInjOp ops =
case ops of
Op_name _ -> error "CASL2TopSort.genEitherAxiom.isInjObj"
Qual_op_name on _ _ -> isInjName on
resultSort (Qual_op_name _ (Op_type _ _ t _) _) = t
resultSort _ = error "CASL2TopSort.genEitherAxiom.resultSort"
argSort (Qual_op_name _ (Op_type _ [x] _ _) _) = x
argSort _ = error "CASL2TopSort.genEitherAxiom.argSort"
compTarget = comparing resultSort
sameTarget x1 x2 = compTarget x1 x2 == EQ
lTop = lkupTop ssMap
mkXVarDecl = mkVarDeclStr "x" . lTop . resultSort
genQuant qon = mkForall [mkXVarDecl qon]
genImpl xs = case xs of
x : _ -> let
rSrt = resultSort x
ltSrt = lTop rSrt
disjs = genDisj xs
in if ltSrt == lTop (argSort x) then
if rSrt == ltSrt then disjs else mkImpl (genProp x) disjs
else error "CASL2TopSort.genEitherAxiom.genImpl"
_ -> error "CASL2TopSort.genEitherAxiom.genImpl No OP_SYMB found"
genProp qon =
genPredication (lPredName $ resultSort qon) [mkXVarDecl qon]
lPredName = lkupPred ssMap
genDisj qons = disjunct (map genPred qons)
genPred qon =
genPredication (lPredName $ argSort qon) [mkXVarDecl qon]