CASL2TopSort.hs revision 46f9a8e346557fd27ef5846c54d69869bb031698
{- |
Module : $Header$
Copyright : (c) Klaus Luettich, Uni Bremen 2002-2004
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
Coding out subsorting into unary predicates.
New concept for proving Ontologies.
generatedness via non-injective datatype constructors
(i.e. proper data constructors) is simply ignored
total functions my become partial because i.e. division is total
for a second non-zero argument but partial otherwise.
partial functions remain partial unless the fall to together with an overloaded
total function
-}
module Comorphisms.CASL2TopSort (CASL2TopSort(..)) where
import Data.Maybe
import Data.List
import Logic.Logic
import Logic.Comorphism
import Common.AS_Annotation
import Common.Id
import Common.ProofTree
import Common.Result
import qualified Common.Lib.Rel as Rel
-- CASL
import CASL.Logic_CASL
import CASL.AS_Basic_CASL
import CASL.Fold
import CASL.Sign
import CASL.Morphism
import CASL.Sublogic as SL
import qualified Data.Map as Map
import qualified Data.Set as Set
-- | The identity of the comorphism
data CASL2TopSort = CASL2TopSort deriving Show
instance Language CASL2TopSort where
language_name CASL2TopSort = "CASL2PCFOLTopSort"
instance Comorphism CASL2TopSort
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
Symbol RawSymbol ProofTree
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
Symbol RawSymbol ProofTree where
sourceLogic CASL2TopSort = CASL
sourceSublogic CASL2TopSort = SL.caslTop
{ sub_features = LocFilSub
, cons_features = emptyMapConsFeature }
targetLogic CASL2TopSort = CASL
mapSublogic CASL2TopSort sub =
if sub `isSubElem` sourceSublogic CASL2TopSort
then Just $
sub { sub_features = NoSub -- subsorting is coded out
, cons_features = NoSortGen -- special Sort_gen_ax is coded out
, which_logic = max Horn (which_logic sub)
, has_eq = True -- was in the original targetLogic
-- may be avoided through predications of sort-preds
-- with the result terms of functions instead of formulas like:
-- forall x : T . bot = x => a(x)
-- better: . a(bot)
, has_pred = True }
-- subsorting is coded out and
-- special Sort_gen_ax are coded out
else Nothing
map_theory CASL2TopSort = mkTheoryMapping transSig transSen
map_morphism CASL2TopSort mor = do
let trSig = fmap fst . transSig
sigSour <- trSig $ msource mor
sigTarg <- trSig $ mtarget mor
return mor
{ msource = sigSour
, mtarget = sigTarg }
map_sentence CASL2TopSort = transSen
map_symbol CASL2TopSort _ = Set.singleton . id
has_model_expansion CASL2TopSort = True
data PredInfo = PredInfo { topSortPI :: SORT
, directSuperSortsPI :: Set.Set SORT
, predicatePI :: PRED_NAME
} deriving (Show, Ord, Eq)
type SubSortMap = Map.Map SORT PredInfo
-> SubSortMap
generateSubSortMap sortRels pMap =
let disAmbMap = Map.map disAmbPred
disAmbPred v = let pn = predicatePI v in
case dropWhile (flip Map.member pMap)
$ pn : map (appendNumber (predicatePI v)) [1 ..] of
n : _ -> v { predicatePI = n }
[] -> error "generateSubSortMap"
mR = (Rel.flatSet .
Rel.partSet (\ x y -> Rel.member x y sortRels &&
Rel.member y x sortRels))
(Rel.mostRight sortRels)
toPredInfo k e =
let ts = case filter (flip (Rel.member k) sortRels)
$ Set.toList mR of
[x] -> x
_ -> error "CASL2TopSort.generateSubSortMap.toPredInfo"
in PredInfo { topSortPI = ts
, directSuperSortsPI = Set.difference e mR
, predicatePI = k }
initMap = Map.filterWithKey (\ k _ -> not $ Set.member k mR)
(Map.mapWithKey toPredInfo
(Rel.toMap (Rel.intransKernel sortRels)))
in disAmbMap initMap
-- | Finds Top-sort(s) and transforms for each top-sort all subsorts
-- into unary predicates. All predicates typed with subsorts are now
-- typed with the top-sort and axioms reflecting the typing are
-- generated. The operations are treated analogous. Axioms are
-- generated that each generated unary predicate must hold on at least
-- one element of the top-sort.
transSig :: Sign () e -> Result (Sign () e, [Named (FORMULA ())])
transSig sig = return $ let sortRels = Rel.transClosure $ sortRel sig in
if Rel.null sortRels then (sig, []) else
let subSortMap = generateSubSortMap sortRels (predMap sig)
newOpMap = transOpMap sortRels subSortMap (opMap sig)
newAssOpMap0 = transOpMap sortRels subSortMap (assocOps sig)
axs = generateAxioms subSortMap (predMap sig) newOpMap
newPreds = foldr (\ pI -> Map.insert (predicatePI pI)
$ Set.singleton $ PredType [topSortPI pI])
newPredMap = Map.unionWith Set.union (transPredMap subSortMap
$ predMap sig) $ newPreds subSortMap
in (sig
{ sortSet = Set.fromList (map topSortPI $ Map.elems subSortMap)
, sortRel = Rel.empty
, opMap = newOpMap
, assocOps= interOpMapSet newAssOpMap0 newOpMap
, predMap = newPredMap
}, axs ++ symmetryAxioms subSortMap sortRels)
where transType t = t
{ predArgs = map (lkupTop subSortMap) $ predArgs t }
where
transType t =
let args = opArgs t
lkp = lkupTop subSortMap
newArgs = map lkp args
kd = opKind t
in -- make function partial if argument sorts are subsorts
t { opArgs = map lkp $ opArgs t
, opRes = lkp $ opRes t
, opKind = if kd == Total && and (zipWith
(\ a na -> a == na || Rel.member na a sRel)
args newArgs) then kd else Partial }
procOpMapping :: SubSortMap -> OP_NAME -> Set.Set OpType
-> [Named (FORMULA ())] -> [Named (FORMULA ())]
procOpMapping subSortMap opName =
(++) . Map.foldWithKey procProfMapOpMapping [] . mkProfMapOp subSortMap
where
procProfMapOpMapping :: [SORT] -> (OpKind, Set.Set [Maybe PRED_NAME])
-> [Named (FORMULA ())] -> [Named (FORMULA ())]
procProfMapOpMapping sl (kind, spl) = genArgRest
(genSenName "o" opName $ length sl) (genOpEquation kind opName) sl spl
mkQualPred :: PRED_NAME -> SORT -> PRED_SYMB
mkQualPred symS ts = Qual_pred_name symS (Pred_type [ts] nullRange) nullRange
symmetryAxioms :: SubSortMap -> Rel.Rel SORT -> [Named (FORMULA ())]
symmetryAxioms ssMap sortRels =
let symSets = Rel.sccOfClosure sortRels
toAxioms = concatMap
(\ s ->
let ts = lkupTop ssMap s
symS = lkupPred ssMap s
psy = mkQualPred symS ts
vd = mkVarDeclStr "x" ts
vt = toQualVar vd
in if ts == s then [] else
[makeNamed (show ts ++ "_symmetric_with_" ++ show symS)
$ mkForall [vd] (Predication psy [vt] nullRange) nullRange]
) . Set.toList
in concatMap toAxioms symSets
generateAxioms subSortMap pMap oMap = hi_axs ++ p_axs ++ axs
where -- generate argument restrictions for operations
axs = Map.foldWithKey (procOpMapping subSortMap) [] oMap
p_axs =
-- generate argument restrictions for predicates
Map.foldWithKey (\ pName ->
(++) . Map.foldWithKey
(\ sl -> genArgRest
(genSenName "p" pName $ length sl)
(genPredication pName)
sl)
[] . mkProfMapPred subSortMap)
[] pMap
hi_axs =
-- generate subclass_of axioms derived from subsorts
-- and non-emptyness axioms
concatMap (\ prdInf ->
let ts = topSortPI prdInf
subS = predicatePI prdInf
set = directSuperSortsPI prdInf
supPreds = map (lkupPred subSortMap) $ Set.toList set
x = mkVarDeclStr "x" ts
mkPredf sS = Predication (mkQualPred sS ts) [toQualVar x]
nullRange
in makeNamed (show subS ++ "_non_empty")
(Quantification Existential [x] (mkPredf subS)
nullRange)
: map (\ supS ->
makeNamed (show subS ++ "_subclassOf_" ++ show supS)
$ mkForall [x]
(mkImpl (mkPredf subS) $ mkPredf supS)
nullRange) supPreds
) $ Map.elems subSortMap
mkProfMapPred :: SubSortMap -> Set.Set PredType
where seperate pt = Rel.setInsert (pt2topSorts pt) (pt2preds pt)
pt2topSorts = map (lkupTop ssm) . predArgs
pt2preds = map (lkupPredM ssm) . predArgs
mkProfMapOp :: SubSortMap -> Set.Set OpType
where seperate ot mp =
Map.insertWith (\ (k1, s1) (k2, s2) ->
(min k1 k2, Set.union s1 s2))
(pt2topSorts joinedList)
(fKind, Set.singleton $ pt2preds joinedList) mp
where joinedList = opRes ot : opArgs ot
fKind = opKind ot
pt2topSorts = map (lkupTop ssm)
pt2preds = map (lkupPredM ssm)
lkupTop :: SubSortMap -> SORT -> SORT
lkupTop ssm s = maybe s topSortPI (Map.lookup s ssm)
lkupPredM :: SubSortMap -> SORT -> Maybe PRED_NAME
lkupPredM ssm s = fmap predicatePI $ Map.lookup s ssm
lkupPred :: SubSortMap -> SORT -> PRED_NAME
lkupPred ssm = fromMaybe (error "CASL2TopSort.lkupPred") . lkupPredM ssm
genArgRest :: String -> ([VAR_DECL] -> FORMULA f)
-- ^ generates from a list of variables
-- either the predication or function equation
-> [SORT] -> (Set.Set [Maybe PRED_NAME])
-> [Named (FORMULA f)] -> [Named (FORMULA f)]
genArgRest sen_name genProp sl spl fs =
let vars = genVars sl
mquant = genQuantification (genProp vars) vars spl
in maybe fs (\ quant -> makeNamed sen_name quant : fs) mquant
genPredication :: PRED_NAME -> [VAR_DECL] -> FORMULA f
genPredication pName vars =
genPredAppl pName (map (\ (Var_decl _ s _) -> s) vars) $ map toQualVar vars
-- | generate a predication with qualified pred name
genPredAppl :: PRED_NAME -> [SORT] -> [TERM f] -> FORMULA f
genPredAppl pName sl terms = Predication (Qual_pred_name pName
(Pred_type sl nullRange) nullRange) terms nullRange
genOpEquation :: OpKind -> OP_NAME -> [VAR_DECL] -> FORMULA f
genOpEquation kind opName vars = case map toQualVar vars of
resTerm : argTerms -> Strong_equation opTerm resTerm nullRange
where opTerm = mkAppl (Qual_op_name opName opType nullRange) argTerms
opType = Op_type kind argSorts resSort nullRange
argSorts = map sortOfTerm argTerms
resSort = sortOfTerm resTerm
_ -> error "CASL2TopSort.genOpEquation: no result variable"
genVars :: [SORT] -> [VAR_DECL]
genVars = zipWith mkVarDeclStr varSymbs
where varSymbs =
map (: []) "xyzuwv" ++ map (\ i -> 'v' : show i) [(1::Int)..]
genSenName :: Show a => String -> a -> Int -> String
genSenName suff symbName arity =
"arg_rest_" ++ show symbName ++ '_' : suff ++ '_' : show arity
genQuantification :: FORMULA f -- ^ either the predication or
-- function equation
-> [VAR_DECL] -- ^ Qual_vars
-> (Set.Set [Maybe PRED_NAME])
-> Maybe (FORMULA f)
genQuantification prop vars spl = do
dis <- genDisjunction vars spl
return $ mkForall vars
(mkImpl prop dis) nullRange
genDisjunction :: [VAR_DECL] -> Set.Set [Maybe PRED_NAME] -> Maybe (FORMULA f)
genDisjunction vars spn
| Set.size spn == 1 =
case disjs of
[] -> Nothing
[x] -> Just x
_ -> error "CASL2TopSort.genDisjunction: this cannot happen"
| null disjs = Nothing
| otherwise = Just (Disjunction disjs nullRange)
where disjs = foldl genConjunction [] (Set.toList spn)
genConjunction acc pns
| null conjs = acc
| otherwise = Conjunction (reverse conjs) nullRange : acc
where conjs = foldl genPred [] (zip vars pns)
genPred acc (v, mpn) = maybe acc
(\ pn -> genPredication pn [v] : acc) mpn
-- | Each membership test of a subsort is transformed to a predication
-- of the corresponding unary predicate. Variables quantified over a
-- subsort yield a premise to the quantified formula that the
-- corresponding predicate holds. All typings are adjusted according
-- to the subsortmap and sort generation constraints are translated to
-- disjointness axioms.
transSen :: Sign f e -> FORMULA f -> Result (FORMULA f)
transSen sig f = let sortRels = Rel.transClosure $ sortRel sig in
if Rel.null sortRels then return f else do
let ssm = generateSubSortMap sortRels (predMap sig)
newOpMap = transOpMap sortRels ssm (opMap sig)
mapSen ssm newOpMap f
mapSen :: SubSortMap -> OpMap -> FORMULA f -> Result (FORMULA f)
mapSen ssMap opM f =
case f of
Sort_gen_ax cs _ ->
genEitherAxiom ssMap cs
_ -> return $ foldFormula (mapRec ssMap opM) f
mapRec :: SubSortMap -> OpMap -> Record f (FORMULA f) (TERM f)
mapRec ssM opM = (mapRecord id)
{ foldQuantification = \ _ q vdl ->
Quantification q (map updateVarDecls vdl) . relativize q vdl
, foldMembership = \ _ t s pl -> maybe (Membership t s pl)
(\ pn -> genPredAppl pn [lTop s] [t]) $ lPred s
, foldPredication = \ _ -> Predication . updatePRED_SYMB
, foldQual_var = \ _ v -> Qual_var v . lTop
, foldApplication = \ _ -> Application . updateOP_SYMB
, foldSorted_term = \ _ t1 -> Sorted_term t1 . lTop
-- casts are discarded due to missing subsorting
, foldCast = \ _ t1 _ _ -> t1 }
where lTop = lkupTop ssM
lPred = lkupPredM ssM
updateOP_SYMB (Op_name _) =
error "CASL2TopSort.mapTerm: got untyped application"
updateOP_SYMB (Qual_op_name on ot pl) =
Qual_op_name on (updateOP_TYPE on ot) pl
updateOP_TYPE on (Op_type _ sl s pl) =
let args = map lTop sl
res = lTop s
t1 = toOpType $ Op_type Total args res pl
ts = Map.findWithDefault Set.empty on opM
nK = if Set.member t1 ts then Total else Partial
in Op_type nK args res pl
updateVarDecls (Var_decl vl s pl) =
Var_decl vl (lTop s) pl
updatePRED_SYMB (Pred_name _) =
error "CASL2TopSort.mapSen: got untyped predication"
updatePRED_SYMB (Qual_pred_name pn (Pred_type sl pl') pl) =
Qual_pred_name pn
(Pred_type (map lTop sl) pl') pl
-- relativize quantifiers using predicates coding sorts
relativize q vdl f1 = let vPs = mkVarPreds vdl in
if null vdl then f1
else case q of -- universal? then use implication
Universal -> mkImpl vPs f1
-- existential or unique-existential? then use conjuction
_ -> conjunct [vPs, f1]
mkVarPreds = conjunct . map mkVarPred
mkVarPred (Var_decl vs s _) = conjunct $ foldr (mkVarPred1 s) [] vs
mkVarPred1 s v = case lPred s of
-- no subsort? then no relativization
Nothing -> id
Just p1 -> (genPredication p1 [mkVarDecl v $ lTop s] :)
genEitherAxiom :: SubSortMap -> [Constraint] -> Result (FORMULA f)
genEitherAxiom ssMap =
genConjunction . (\ (_, osl, _) -> osl) . recover_Sort_gen_ax
where genConjunction osl =
let (injOps, constrs) = partition isInjOp osl
groupedInjOps = groupBy sameTarget $ sortBy compTarget injOps
in if null constrs
then case groupedInjOps of
[] -> fatal_error "No injective operation found" nullRange
[xs@(x : _)] -> return $ genQuant x $ genImpl xs
((x : _) : _) -> return $ genQuant x
$ conjunct $ map genImpl groupedInjOps
_ -> error "CASL2TopSort.genEitherAxiom.groupedInjOps"
else Result [mkDiag Hint
"ignoring generating constructors"
constrs]
$ Just $ True_atom nullRange
isInjOp ops =
case ops of
Op_name _ -> error "CASL2TopSort.genEitherAxiom.isInjObj"
Qual_op_name on _ _ -> isInjName on
resultSort (Qual_op_name _ (Op_type _ _ t _) _) = t
resultSort _ = error "CASL2TopSort.genEitherAxiom.resultSort"
argSort (Qual_op_name _ (Op_type _ [x] _ _) _) = x
argSort _ = error "CASL2TopSort.genEitherAxiom.argSort"
compTarget x1 x2 = compare (resultSort x1) (resultSort x2)
sameTarget x1 x2 = compTarget x1 x2 == EQ
lTop = lkupTop ssMap
mkXVarDecl = mkVarDeclStr "x" . lTop . resultSort
genQuant qon f = mkForall [mkXVarDecl qon] f nullRange
genImpl xs = case xs of
x : _ -> let
rSrt = resultSort x
ltSrt = lTop rSrt
disjs = genDisj xs
in if ltSrt == lTop (argSort x) then
if rSrt == ltSrt then disjs else mkImpl (genProp x) disjs
else error "CASL2TopSort.genEitherAxiom.genImpl"
_ -> error "CASL2TopSort.genEitherAxiom.genImpl No OP_SYMB found"
genProp qon =
genPredication (lPredName $ resultSort qon) [mkXVarDecl qon]
lPredName = lkupPred ssMap
genDisj qons = Disjunction (map genPred qons) nullRange
genPred qon =
genPredication (lPredName $ argSort qon) [mkXVarDecl qon]