CASL2SubCFOL.inline.hs revision a14767aeac3e78ed100f5b75e210ba563ee10dba
{- |
Module : $Header$
Description : coding out partiality
Copyright : (c) Zicheng Wang, C.Maeder Uni Bremen 2002-2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : non-portable (imports Logic.Comorphism)
Coding out partiality (SubPCFOL= -> SubCFOL=) while keeping subsorting.
Without unique bottoms sort generation axioms are not allowed.
Then we have (SubPFOL= -> SubFOL=).
-}
module Comorphisms.CASL2SubCFOL where
import Logic.Logic
import Logic.Comorphism
import CASL.Logic_CASL
import CASL.AS_Basic_CASL
import CASL.Sign
import CASL.Morphism
import CASL.Sublogic as SL hiding (bottom)
import CASL.Overload
import CASL.Fold
import CASL.Project
import CASL.Simplify
import Common.Id
import Common.DocUtils
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Common.Lib.Rel as Rel
import Common.AS_Annotation
import Common.ProofUtils
import Common.ProofTree
import Data.List (zip)
-- | determine the need for bottom constants
data FormulaTreatment = NoMembershipOrCast | FormulaDependent | SubsortBottoms
deriving Show
-- | a case selector for formula treatment
treatFormula :: FormulaTreatment -> a -> a -> a -> a
treatFormula g a b c = case g of
NoMembershipOrCast -> a
FormulaDependent -> b
SubsortBottoms -> c
{- | The identity of the comorphism depending on parameters.
'NoMembershipOrCast' reject membership test or cast to non-bottom sorts.
. 'FormulaDependent' creates a formula dependent signature translation.
'SubsortBottoms' creates bottoms for all proper subsorts. -}
data CASL2SubCFOL = CASL2SubCFOL
{ uniqueBottom :: Bool -- ^ removes free types
, formulaTreatment :: FormulaTreatment
-- ^ deal with membership tests and casts
} deriving Show
{- | create unique bottoms, sorts with bottom depend on membership
and casts in theory sentences. -}
defaultCASL2SubCFOL :: CASL2SubCFOL
defaultCASL2SubCFOL = CASL2SubCFOL True FormulaDependent
instance Language CASL2SubCFOL where
language_name (CASL2SubCFOL _ m) = "CASL2SubCFOL"
++ treatFormula m (show m) "" (show m)
instance Comorphism CASL2SubCFOL
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
Symbol RawSymbol ProofTree
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
Symbol RawSymbol ProofTree where
sourceLogic (CASL2SubCFOL _ _) = CASL
sourceSublogic (CASL2SubCFOL b _) =
if b then SL.caslTop else SL.caslTop { cons_features = NoSortGen }
targetLogic (CASL2SubCFOL _ _) = CASL
mapSublogic (CASL2SubCFOL _ _) sl = Just $ if has_part sl then sl
{ has_part = False -- partiality is coded out
, has_pred = True
, which_logic = max Horn $ which_logic sl
, has_eq = True} else sl
map_theory (CASL2SubCFOL b m) (sig, sens) =
let fbsrts = Set.unions $ map (botFormulaSorts . sentence) sens
bsrts = sortsWithBottom m sig fbsrts
sens1 = generateAxioms b bsrts sig
sens2 =
map (mapNamed (simplifyFormula id . codeFormula b bsrts)) sens
in case m of
NoMembershipOrCast
| not $ Set.null $ Set.difference fbsrts bsrts ->
fail "CASL2SubCFOL: unexpected membership test or cast"
_ -> return
( encodeSig bsrts sig
, nameAndDisambiguate $ sens1 ++ sens2)
map_morphism (CASL2SubCFOL _ m) mor@Morphism{msource = src, mtarget = tar}
= return
mor { msource = encodeSig (sortsWithBottom m src Set.empty) src
, mtarget = encodeSig (sortsWithBottom m tar Set.empty) tar
, fun_map = Map.map (\ (i, _) -> (i, Total)) $ fun_map mor }
map_sentence (CASL2SubCFOL b m) sig sen = let
fbsrts = botFormulaSorts sen
bsrts = sortsWithBottom m sig fbsrts
in case m of
NoMembershipOrCast
| not $ Set.null $ Set.difference fbsrts bsrts ->
fail $ "CASL2SubCFOL: unexpected membership test or cast:\n"
++ showDoc sen ""
_ -> return $ simplifyFormula id $ codeFormula b bsrts sen
map_symbol (CASL2SubCFOL _ _) s =
Set.singleton s { symbType = totalizeSymbType $ symbType s }
has_model_expansion (CASL2SubCFOL _ _) = True
is_weakly_amalgamable (CASL2SubCFOL _ _) = True
totalizeSymbType :: SymbType -> SymbType
totalizeSymbType t = case t of
OpAsItemType ot -> OpAsItemType ot { opKind = Total }
_ -> t
sortsWithBottom m sig formBotSrts =
let bsrts = treatFormula m Set.empty formBotSrts $ Map.keysSet $
Rel.toMap $ sortRel sig
ops = Map.elems $ opMap sig
-- all supersorts inherit the same bottom element
allSortsWithBottom s =
Set.unions $ s : map (flip supersortsOf sig) (Set.toList s)
resSortsOfPartialFcts =
allSortsWithBottom $ Set.unions $ bsrts :
map (Set.map opRes . Set.filter
( \ t -> opKind t == Partial)) ops
collect given =
let more = allSortsWithBottom $
Set.unions $ map (Set.map opRes .
Set.filter ( \ t -> any
(flip Set.member given) $ opArgs t)) ops
in if Set.isSubsetOf more given then given
else collect $ Set.union more given
in collect resSortsOfPartialFcts
defPred :: Id
defPred = genName "defined"
defined :: Set.Set SORT -> TERM f -> SORT -> Range -> FORMULA f
defined bsorts t s ps =
if Set.member s bsorts then Predication
(Qual_pred_name defPred (Pred_type [s] nullRange) nullRange) [t] ps
else True_atom ps
defVards :: Set.Set SORT -> [VAR_DECL] -> FORMULA f
defVards bs [vs@(Var_decl [_] _ _)] = head $ defVars bs vs
defVards bs vs = Conjunction (concatMap (defVars bs) vs) nullRange
defVars :: Set.Set SORT -> VAR_DECL -> [FORMULA f]
defVars bs (Var_decl vns s _) = map (defVar bs s) vns
defVar :: Set.Set SORT -> SORT -> Token -> FORMULA f
defVar bs s v = defined bs (Qual_var v s nullRange) s nullRange
totalizeOpSymb :: OP_SYMB -> OP_SYMB
totalizeOpSymb o = case o of
Qual_op_name i (Op_type _ args res ps) qs ->
Qual_op_name i (Op_type Total args res ps) qs
_ -> o
addBottomAlt :: Constraint -> Constraint
addBottomAlt c = let t = Op_type Total [] (newSort c) nullRange in c
{opSymbs = opSymbs c ++ [(Qual_op_name (uniqueBotName t) t nullRange, [])]}
argSorts :: Constraint -> Set.Set SORT
argSorts c = Set.unions $ map (argsOpSymb . fst) $ opSymbs c
where argsOpSymb op = case op of
Qual_op_name _ ot _ -> Set.fromList $ args_OP_TYPE ot
_ -> error "argSorts"
totalizeConstraint :: Set.Set SORT -> Constraint -> Constraint
totalizeConstraint bsrts c =
(if Set.member (newSort c) bsrts then addBottomAlt else id)
c { opSymbs = map ( \ (o, is) -> (totalizeOpSymb o, is)) $ opSymbs c }
-- | Add projections to the signature
encodeSig :: Set.Set SORT -> Sign f e -> Sign f e
encodeSig bsorts sig = if Set.null bsorts then sig else
sig { opMap = projOpMap, predMap = newpredMap } where
botType x = OpType {opKind = Total, opArgs = [], opRes = x }
botOpMap = Set.fold (\ bt -> addOpTo (uniqueBotName $ toOP_TYPE bt) bt)
newTotalMap $ Set.map botType bsorts
defType x = PredType{predArgs=[x]}
defTypes = Set.map defType bsorts
newpredMap = Map.insert defPred defTypes $ predMap sig
rel = sortRel sig
total (s, s') = OpType {opKind = Total, opArgs = [s'], opRes = s }
setprojOptype = Set.map total $ Set.filter ( \ (s, _) ->
Set.member s bsorts) $ Rel.toSet rel
projOpMap = Set.fold (\ t -> addOpTo (uniqueProjName $ toOP_TYPE t) t)
botOpMap setprojOptype
generateAxioms :: Bool -> Set.Set SORT -> Sign f e -> [Named (FORMULA ())]
generateAxioms b bsorts sig = filter (not . is_True_atom . sentence) $
map (mapNamed $ simplifyFormula id . rmDefs bsorts id) $
map (mapNamed $ renameFormula id) $ concat $
[inlineAxioms CASL
" sort s < s' \
\ op pr : s'->s \
\ pred d:s \
\ forall x,y:s'. d(pr(x)) /\\ d(pr(y)) /\\ pr(x)=pr(y) => x=y \
\ %(ga_projection_injectivity)% "
++ inlineAxioms CASL
" sort s < s' \
\ op pr : s'->s \
\ pred d:s \
\ forall x:s . d(x) => pr(x)=x %(ga_projection)% "
| s <- sortList, let y = mkSimpleId "y",
s' <- minSupers s]
++ [inlineAxioms CASL
" sort s \
\ pred d:s \
\ . exists x:s.d(x) %(ga_nonEmpty)%" ++
(if b then
inlineAxioms CASL
" sort s \
\ op bottom:s \
\ pred d:s \
\ . forall x:s . not d(x) <=> x=bottom %(ga_notDefBottom)%"
else
inlineAxioms CASL
" sort s \
\ op bottom:s \
\ pred d:s \
\ . not d(bottom) %(ga_notDefBottom)%")
| s <- sortList ] ++
[inlineAxioms CASL
" sort t \
\ sorts s_i \
\ op f:s_i->t \
\ forall y_k:s_i . def f(y_k) <=> def y_k /\\ def y_k %(ga_totality)%"
| (f,typ) <- opList, opKind typ == Total,
let s=opArgs typ; t=opRes typ; y= mkVars (length s) ] ++
[inlineAxioms CASL
" sort t \
\ sorts s_i \
\ op f:s_i->t \
\ forall y_k:s_i . def f(y_k) => def y_k /\\ def y_k %(ga_strictness)%"
| (f,typ) <- opList, opKind typ == Partial,
let s=opArgs typ; t=opRes typ; y= mkVars (length s) ] ++
[inlineAxioms CASL
" sorts s_i \
\ pred p:s_i \
\ forall y_k:s_i . p(y_k) => def y_k /\\ def y_k \
\ %(ga_predicate_strictness)%"
| (p,typ) <- predList, let s=predArgs typ; y=mkVars (length s) ]
where
x = mkSimpleId "x"
pr = projName
minSupers so = keepMinimals sig id $ Set.toList $ Set.delete so
$ supersortsOf so sig
d = defPred
sortList = Set.toList bsorts
opList = [(f,t) | (f,types) <- Map.toList $ opMap sig,
t <- Set.toList types ]
predList = [(p,t) | (p,types) <- Map.toList $ predMap sig,
t <- Set.toList types ]
mkVars n = [mkSimpleId ("x_"++show i) | i<-[1..n]]
codeRecord :: Bool -> Set.Set SORT -> (f -> f) -> Record f (FORMULA f) (TERM f)
codeRecord uniBot bsrts mf = (mapRecord mf)
{ foldQuantification = \ _ q vs qf ps ->
case q of
Universal ->
Quantification q vs (Implication (defVards bsrts vs) qf True ps) ps
_ -> Quantification q vs (Conjunction [defVards bsrts vs, qf] ps) ps
, foldDefinedness = \ _ t ps -> defined bsrts t (sortOfTerm t) ps
, foldExistl_equation = \ _ t1 t2 ps ->
Conjunction[Strong_equation t1 t2 ps,
defined bsrts t1 (sortOfTerm t1) ps] ps
, foldMembership = \ _ t s ps ->
defined bsrts (projectUnique Total ps t s) s ps
, foldSort_gen_ax = \ _ cs b -> if uniBot then
Sort_gen_ax (map (totalizeConstraint bsrts) cs) $
if not uniBot || Set.null (Set.intersection bsrts
$ Set.fromList $ map newSort cs) then b else False
else error "SubPFOL2SubFOL: unexpected Sort_gen_ax"
, foldApplication = \ _ o args ps -> Application (totalizeOpSymb o) args ps
, foldCast = \ _ t s ps -> projectUnique Total ps t s }
codeFormula :: Bool -> Set.Set SORT -> FORMULA () -> FORMULA ()
codeFormula b bsorts = foldFormula (codeRecord b bsorts $ error "CASL2SubCFol")
rmDefsRecord :: Set.Set SORT -> (f -> f) -> Record f (FORMULA f) (TERM f)
rmDefsRecord bsrts mf = (mapRecord mf)
{ foldDefinedness = \ _ t ps -> defined bsrts t (sortOfTerm t) ps }
rmDefs :: Set.Set SORT -> (f -> f) -> FORMULA f -> FORMULA f
rmDefs bsrts = foldFormula . rmDefsRecord bsrts
-- | find sorts that need a bottom in membership formulas and casts
botSorts mf = (constRecord mf Set.unions Set.empty)
{ foldMembership = \ _ _ s _ -> Set.singleton s
, foldCast = \ _ _ s _ -> Set.singleton s }
botFormulaSorts :: FORMULA f -> Set.Set SORT
botFormulaSorts = foldFormula (botSorts $ const Set.empty)