CASL2Prop.hs revision 98890889ffb2e8f6f722b00e265a211f13b5a861
{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances #-}
{- |
Module : $Header$
Description : Coding of a CASL sublogic to Propositional
Copyright : (c) Dominik Luecke and Uni Bremen 2007
License : GPLv2 or higher, see LICENSE.txt
Maintainer : luecke@informatik.uni-bremen.de
Stability : experimental
Portability : non-portable (imports Logic.Logic)
A comorphism from CASL to Propositional. The CASL sublogic does not precisely
capture the valid domain of the translation. Sorts, ops and preds with
arguments will be ignored. The translation will fail for non-propositional
sentences.
-}
module Comorphisms.CASL2Prop (CASL2Prop (..)) where
import Common.ProofTree
import Logic.Logic
import Logic.Comorphism
-- Propositional
import qualified Propositional.Logic_Propositional as PLogic
import qualified Propositional.AS_BASIC_Propositional as PBasic
import qualified Propositional.Sublogic as PSL
import qualified Propositional.Sign as PSign
import qualified Propositional.Morphism as PMor
import qualified Propositional.Symbol as PSymbol
-- CASL
import CASL.Logic_CASL
import CASL.AS_Basic_CASL
import CASL.Sublogic
import CASL.Sign
import CASL.Morphism
import qualified Data.Set as Set
import qualified Data.Map as Map
import Common.AS_Annotation
import Common.Id
import Common.Result
import Common.DocUtils
-- | lid of the morphism
data CASL2Prop = CASL2Prop deriving Show
instance Language CASL2Prop where
language_name CASL2Prop = "CASL2Propositional"
instance Comorphism CASL2Prop
CASL
CASL_Sublogics
CASLBasicSpec
CASLFORMULA
SYMB_ITEMS
SYMB_MAP_ITEMS
CASLSign
CASLMor
Symbol
RawSymbol
ProofTree
PLogic.Propositional
PSL.PropSL
PBasic.BASIC_SPEC
PBasic.FORMULA
PBasic.SYMB_ITEMS
PBasic.SYMB_MAP_ITEMS
PSign.Sign
PMor.Morphism
PSymbol.Symbol
PSymbol.Symbol
ProofTree
where
sourceLogic CASL2Prop = CASL
sourceSublogic CASL2Prop = sublogics_max need_fol need_pred
targetLogic CASL2Prop = PLogic.Propositional
mapSublogic CASL2Prop = Just . mapSub
map_theory CASL2Prop = mapTheory
is_model_transportable CASL2Prop = True
map_symbol CASL2Prop _ = mapSym
map_sentence CASL2Prop _ = trForm
map_morphism CASL2Prop = mapMor
has_model_expansion CASL2Prop = True
is_weakly_amalgamable CASL2Prop = True
isInclusionComorphism CASL2Prop = False
-- | Translation of the signature
mapSig :: CASLSign -> PSign.Sign
mapSig = PSign.Sign . Map.keysSet . Map.filter (not . Set.null)
. Map.map (Set.filter (null . predArgs)) . predMap
-- | Which is the target sublogic?
mapSub :: CASL_Sublogics -> PSL.PropSL
mapSub sl = if which_logic sl <= Horn then PSL.bottom else PSL.top
-- | Translation of morphisms
mapMor :: CASLMor -> Result PMor.Morphism
mapMor mor = return PMor.Morphism
{ PMor.source = mapSig (msource mor)
, PMor.target = mapSig (mtarget mor)
, PMor.propMap = Map.foldWithKey (\ (i, pt) j ->
if null (predArgs pt) then Map.insert i j else id) Map.empty
$ pred_map mor }
-- | Mapping of a theory
mapTheory :: (CASLSign, [Named CASLFORMULA])
-> Result (PSign.Sign, [Named PBasic.FORMULA])
mapTheory (sig, form) = do
sens <- mapM trNamedForm form
return (mapSig sig, sens)
-- | Translation of symbols
mapSym :: Symbol -> Set.Set PSymbol.Symbol
mapSym sym = case symbType sym of
PredAsItemType pt | null $ predArgs pt ->
Set.singleton (PSymbol.Symbol $ symName sym)
_ -> Set.empty
-- | Helper for map theory
trNamedForm :: Named CASLFORMULA -> Result (Named PBasic.FORMULA)
trNamedForm = mapNamedM trForm
-- | Helper for map sentence and map theory
trForm :: CASLFORMULA -> Result PBasic.FORMULA
trForm form = case form of
Negation fn rn -> do
t <- trForm fn
return $ PBasic.Negation t rn
Conjunction fn rn -> do
ts <- mapM trForm fn
return $ PBasic.Conjunction ts rn
Disjunction fn rn -> do
ts <- mapM trForm fn
return $ PBasic.Disjunction ts rn
Implication f1 f2 b rn -> do
t1 <- trForm f1
t2 <- trForm f2
return $ if b then PBasic.Implication t1 t2 rn else
PBasic.Implication t2 t1 rn
Equivalence f1 f2 rn -> do
t1 <- trForm f1
t2 <- trForm f2
return $ PBasic.Equivalence t1 t2 rn
True_atom rn -> return $ PBasic.True_atom rn
False_atom rn -> return $ PBasic.False_atom rn
Predication (Qual_pred_name pid (Pred_type [] _) _) [] _ ->
return . PBasic.Predication . mkSimpleId $ show pid
_ -> fail $ "not a propositional formula: " ++ showDoc form ""