CASL2PCFOL.inline.hs revision 42626cd6acc59504dff56b5b81043c272778c5fb
{- |
Module : $Header$
Copyright : (c) Zicheng Wang, C.Maeder Uni Bremen 2002-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : provisional
Portability : portable
Coding out subsorting (SubPCFOL= -> PCFOL=),
following Chap. III:3.1 of the CASL Reference Manual
-}
module Comorphisms.CASL2PCFOL where
import Logic.Logic
import Logic.Comorphism
import Common.Id
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import qualified Common.Lib.Rel as Rel
import Common.AS_Annotation
import Data.List
-- CASL
import CASL.Logic_CASL
import CASL.AS_Basic_CASL
import CASL.Sign
import CASL.Morphism
import CASL.Sublogic
import CASL.Inject
import CASL.Project
import CASL.Overload
import CASL.StaticAna
-- | The identity of the comorphism
data CASL2PCFOL = CASL2PCFOL deriving (Show)
instance Language CASL2PCFOL -- default definition is okay
instance Comorphism CASL2PCFOL
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
Symbol RawSymbol ()
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
Symbol RawSymbol () where
sourceLogic CASL2PCFOL = CASL
sourceSublogic CASL2PCFOL = CASL_SL
{ sub_features = Sub,
has_part = True,
cons_features = SortGen { emptyMapping = False,
onlyInjConstrs = False},
has_eq = True,
has_pred = True,
which_logic = FOL
}
targetLogic CASL2PCFOL = CASL
targetSublogic CASL2PCFOL = CASL_SL
{ sub_features = NoSub, -- subsorting is coded out
has_part = True,
cons_features = SortGen { emptyMapping = False,
onlyInjConstrs = False},
has_eq = True,
has_pred = True,
which_logic = FOL
}
map_theory CASL2PCFOL = mkTheoryMapping ( \ sig ->
let e = encodeSig sig in return (e, monotonicities sig ++ generateAxioms sig))
(map_sentence CASL2PCFOL)
map_morphism CASL2PCFOL mor = return
(mor { msource = encodeSig $ msource mor,
mtarget = encodeSig $ mtarget mor })
-- other components need not to be adapted!
map_sentence CASL2PCFOL _ = return . f2Formula
map_symbol CASL2PCFOL = Set.singleton . id
-- | Add injection, projection and membership symbols to a signature
encodeSig :: Sign f e -> Sign f e
encodeSig sig
= if Rel.null rel then sig else
sig{sortRel = Rel.empty, opMap = projOpMap}
where
rel = Rel.irreflex $ sortRel sig
total (s, s') = OpType{opKind = Total, opArgs = [s], opRes = s'}
partial (s, s') = OpType{opKind = if Rel.member s' s rel
then Total
else Partial, opArgs = [s'], opRes = s}
setinjOptype = Set.map total $ Rel.toSet rel
setprojOptype = Set.map partial $ Rel.toSet rel
injOpMap = Map.insert injName setinjOptype $ opMap sig
projOpMap = Map.insert projName setprojOptype $ injOpMap
-- membership predicates are coded out
generateAxioms :: Sign f e -> [Named (FORMULA ())]
generateAxioms sig = concat([inlineAxioms CASL
" sorts s, s' \
\ op inj : s->s' \
\ forall x,y:s . inj(x)=e=inj(y) => x=e=y %(ga_embedding_injectivity)% "
++ inlineAxioms CASL
" sort s, s' \
\ op pr : s'->?s \
\ forall x,y:s'. pr(x)=e=pr(y)=>x=e=y %(ga_projection_injectivity)% "
++ inlineAxioms CASL
" sort s, s' \
\ op pr : s'->?s ; inj:s->s' \
\ forall x:s . pr(inj(x))=e=x %(ga_projection)% "
| s <- sorts,
s' <- minSupers s]
++ [inlineAxioms CASL
" sort s, s', s'' \
\ op inj:s'->s'' ; inj: s->s' ; inj:s->s'' \
\ forall x:s . inj(inj(x))=e=inj(x) %(ga_transitivity)% "
| s <- sorts,
s' <- minSupers s,
s'' <- minSupers s',
s'' /= s]
++ [inlineAxioms CASL
" sort s, s' \
\ op inj:s->s' ; inj: s'->s \
\ forall x:s . inj(inj(x))=e=x %(ga_identity)% "
| s <- sorts,
s' <- minSupers s,
Set.member s $ supersortsOf s' sig2])
where
x = mkSimpleId "x"
y = mkSimpleId "y"
inj = injName
pr = projName
minSupers so = keepMinimals sig2 id $ Set.toList $ Set.delete so
$ supersortsOf so sig2
sorts = Set.toList $ sortSet sig
sig2 = sig { sortRel = Rel.irreflex $ sortRel sig }
monotonicities :: Sign f e -> [Named (FORMULA f)]
monotonicities sig =
concatMap (makeMonos sig) (Map.toList $ opMap sig)
++ concatMap (makePredMonos sig) (Map.toList $ predMap sig)
makeMonos :: Sign f e -> (Id, Set.Set OpType) -> [Named (FORMULA f)]
makeMonos sig (o, ts) = makeEquivMonos o sig $ Set.toList ts
makePredMonos :: Sign f e -> (Id, Set.Set PredType) -> [Named (FORMULA f)]
makePredMonos sig (p, ts) = makeEquivPredMonos p sig $ Set.toList ts
makeEquivMonos :: Id -> Sign f e -> [OpType] -> [Named (FORMULA f)]
makeEquivMonos o sig ts =
case ts of
[] -> []
t : rs -> concatMap (makeEquivMono o sig t) rs ++
makeEquivMonos o sig rs
makeEquivPredMonos :: Id -> Sign f e -> [PredType] -> [Named (FORMULA f)]
makeEquivPredMonos o sig ts =
case ts of
[] -> []
t : rs -> concatMap (makeEquivPredMono o sig t) rs ++
makeEquivPredMonos o sig rs
makeEquivMono :: Id -> Sign f e -> OpType -> OpType -> [Named (FORMULA f)]
makeEquivMono o sig o1 o2 =
let rs = minimalSupers sig (opRes o1) (opRes o2)
a1 = opArgs o1
a2 = opArgs o2
args = if length a1 == length a2 then
combine $ zipWith (maximalSubs sig) a1 a2
else []
in concatMap (makeEquivMonoRs o o1 o2 rs) args
makeEquivMonoRs :: Id -> OpType -> OpType ->
[SORT] -> [SORT] -> [Named (FORMULA f)]
makeEquivMonoRs o o1 o2 rs args = map (makeEquivMonoR o o1 o2 args) rs
makeEquivMonoR :: Id -> OpType -> OpType ->
[SORT] -> SORT -> Named (FORMULA f)
makeEquivMonoR o o1 o2 args res =
let vds = zipWith (\ s n -> Var_decl [mkSelVar "x" n] s nullRange) args [1..]
a1 = zipWith (\ v s ->
inject nullRange (toQualVar v) s) vds $ opArgs o1
a2 = zipWith (\ v s ->
inject nullRange (toQualVar v) s) vds $ opArgs o2
t1 = inject nullRange (Application (Qual_op_name o (toOP_TYPE o1) nullRange) a1 nullRange)
res
t2 = inject nullRange (Application (Qual_op_name o (toOP_TYPE o2) nullRange) a2 nullRange)
res
in NamedSen "ga_function_monotonicity" True False
$ mkForall vds (Existl_equation t1 t2 nullRange) nullRange
makeEquivPredMono :: Id -> Sign f e -> PredType -> PredType
-> [Named (FORMULA f)]
makeEquivPredMono o sig o1 o2 =
let a1 = predArgs o1
a2 = predArgs o2
args = if length a1 == length a2 then
combine $ zipWith (maximalSubs sig) a1 a2
else []
in map (makeEquivPred o o1 o2) args
makeEquivPred :: Id -> PredType -> PredType -> [SORT] -> Named (FORMULA f)
makeEquivPred o o1 o2 args =
let vds = zipWith (\ s n -> Var_decl [mkSelVar "x" n] s nullRange) args [1..]
a1 = zipWith (\ v s ->
inject nullRange (toQualVar v) s) vds $ predArgs o1
a2 = zipWith (\ v s ->
inject nullRange (toQualVar v) s) vds $ predArgs o2
t1 = Predication (Qual_pred_name o (toPRED_TYPE o1) nullRange) a1 nullRange
t2 = Predication (Qual_pred_name o (toPRED_TYPE o2) nullRange) a2 nullRange
in NamedSen "ga_predicate_monotonicity" True False
$ mkForall vds (Equivalence t1 t2 nullRange) nullRange
f2Formula :: FORMULA f -> FORMULA f
f2Formula = projFormula Partial id . injFormula id