Analysis.hs revision b3138d7e20d2d6dd26a325b844a8b21b0ecbb602
{- |
Module : $Header$
Description : Basic analysis for common logic
Copyright : (c) Karl Luc, Uni Bremen 2010
License : GPLv2 or higher, see LICENSE.txt
Maintainer : kluc@informatik.uni-bremen.de
Stability : experimental
Portability : portable
Basic and static analysis for common logic
-}
module CommonLogic.Analysis
where
import Common.ExtSign
import Common.Result as Result
import qualified Common.AS_Annotation as AS_Anno
import qualified Common.Id as Id
import CommonLogic.Symbol as Symbol
import qualified CommonLogic.AS_CommonLogic as CL
import CommonLogic.Morphism as Morphism
import CommonLogic.Sign as Sign
import qualified Data.Set as Set
import qualified Data.Map as Map
import qualified Data.List as List
data DIAG_FORM = DiagForm
{
formula :: AS_Anno.Named CL.TEXT_MRS,
diagnosis :: Result.Diagnosis
}
-- | retrieves the signature out of a basic spec
makeSig :: CL.BASIC_SPEC -> Sign.Sign -> Sign.Sign
makeSig (CL.Basic_spec spec) sig = List.foldl retrieveBasicItem sig spec
retrieveBasicItem :: Sign.Sign -> AS_Anno.Annoted CL.BASIC_ITEMS -> Sign.Sign
retrieveBasicItem sig x = case AS_Anno.item x of
CL.Axiom_items xs -> retrieveSign sig xs
retrieveSign :: Sign.Sign -> AS_Anno.Annoted CL.TEXT_MRS
-> Sign.Sign
retrieveSign sig = Sign.unite sig . propsOfFormula . fst . AS_Anno.item
-- retrieve CL.Sentence out of BASIC_SPEC
-- retrieveSentence :: CL.BASIC_SPEC -> [AS_Anno.Named (CL.SENTENCE)]
-- | retrieve sentences
makeFormulas :: CL.BASIC_SPEC -> Sign.Sign -> [DIAG_FORM]
makeFormulas (CL.Basic_spec bspec) sig =
List.foldl (\ xs bs -> retrieveFormulaItem xs bs sig) [] bspec
retrieveFormulaItem :: [DIAG_FORM] -> AS_Anno.Annoted CL.BASIC_ITEMS
-> Sign.Sign -> [DIAG_FORM]
retrieveFormulaItem axs x sig =
case AS_Anno.item x of
CL.Axiom_items ax -> addFormula axs (numberFormulae ax 0) sig
data NUM_FORM = NumForm
{
nfformula :: AS_Anno.Annoted CL.TEXT_MRS
, nfnum :: Int
}
numberFormulae :: AS_Anno.Annoted CL.TEXT_MRS -> Int -> NUM_FORM
numberFormulae x i =
if null $ AS_Anno.getRLabel x
then NumForm {nfformula = x, nfnum = i}
else NumForm {nfformula = x, nfnum = 0}
addFormula :: [DIAG_FORM]
-> NUM_FORM
-> Sign.Sign
-> [DIAG_FORM]
addFormula formulae nf _ = formulae ++
[DiagForm {
formula = makeNamed f i
, diagnosis = Result.Diag
{
Result.diagKind = Result.Hint
, Result.diagString = "All fine"
, Result.diagPos = lnum
}
}]
where
f = nfformula nf
i = nfnum nf
lnum = AS_Anno.opt_pos f
-- | generates a named formula
makeNamed :: AS_Anno.Annoted CL.TEXT_MRS -> Int
-> AS_Anno.Named CL.TEXT_MRS
makeNamed f i =
(AS_Anno.makeNamed (
if null label
then case text of
CL.Named_text s _ _ -> s
_ -> "Ax_" ++ show i
else label
) $ AS_Anno.item f)
{ AS_Anno.isAxiom = not isTheorem }
where
(text, _) = AS_Anno.item f
label = AS_Anno.getRLabel f
annos = AS_Anno.r_annos f
isImplies = any AS_Anno.isImplies annos
isImplied = any AS_Anno.isImplied annos
isTheorem = isImplies || isImplied
-- | Retrives the signature of a sentence
propsOfFormula :: CL.TEXT -> Sign.Sign
propsOfFormula (CL.Named_text _ txt _) = propsOfFormula txt
propsOfFormula (CL.Text phrs _) = Sign.uniteL $ map propsOfPhrase phrs
propsOfPhrase :: CL.PHRASE -> Sign.Sign
propsOfPhrase (CL.Module m) = propsOfModule m
propsOfPhrase (CL.Sentence s) = propsOfSentence s
propsOfPhrase (CL.Comment_text _ txt _) = propsOfFormula txt
propsOfPhrase (CL.Importation _) = Sign.emptySig
propsOfModule :: CL.MODULE -> Sign.Sign
propsOfModule m = case m of
(CL.Mod n txt _) -> Sign.unite (propsOfFormula txt) $ nameToSign n
(CL.Mod_ex n exs txt _) -> Sign.unite (propsOfFormula txt)
$ Sign.uniteL $ nameToSign n : map nameToSign exs
where nameToSign x = Sign.Sign {
Sign.items = Set.singleton $ Id.simpleIdToId x,
Sign.discourseItems = Set.singleton $ Id.simpleIdToId x
}
propsOfSentence :: CL.SENTENCE -> Sign.Sign
propsOfSentence (CL.Atom_sent form _) = case form of
CL.Equation term1 term2 -> Sign.unite (propsOfTerm term1)
(propsOfTerm term2)
CL.Atom term ts -> Sign.unite (propsOfTerm term)
(uniteMap propsOfTermSeq ts)
propsOfSentence (CL.Quant_sent qs _) = case qs of
CL.Universal xs s -> Sign.sigDiff (propsOfSentence s)
(uniteMap propsOfNames xs)
CL.Existential xs s -> Sign.sigDiff (propsOfSentence s)
(uniteMap propsOfNames xs)
propsOfSentence (CL.Bool_sent bs _) = case bs of
CL.Conjunction xs -> uniteMap propsOfSentence xs
CL.Disjunction xs -> uniteMap propsOfSentence xs
CL.Negation x -> propsOfSentence x
CL.Implication s1 s2 -> Sign.unite (propsOfSentence s1) (propsOfSentence s2)
CL.Biconditional s1 s2 -> Sign.unite (propsOfSentence s1) (propsOfSentence s2)
propsOfSentence (CL.Comment_sent _ s _) = propsOfSentence s
propsOfSentence (CL.Irregular_sent s _) = propsOfSentence s
propsOfTerm :: CL.TERM -> Sign.Sign
propsOfTerm term = case term of
CL.Name_term x -> Sign.Sign {
Sign.items = Set.singleton $ Id.simpleIdToId x,
Sign.discourseItems = Set.singleton $ Id.simpleIdToId x
}
CL.Funct_term t ts _ -> Sign.unite (propsOfTerm t)
(uniteMap propsOfTermSeq ts)
CL.Comment_term t _ _ -> propsOfTerm t -- fix
propsOfNames :: CL.NAME_OR_SEQMARK -> Sign.Sign
propsOfNames (CL.Name x) = Sign.Sign {
Sign.items = Set.singleton $ Id.simpleIdToId x,
Sign.discourseItems = Set.singleton $ Id.simpleIdToId x
}
propsOfNames (CL.SeqMark x) = Sign.Sign {
Sign.items = Set.singleton $ Id.simpleIdToId x,
Sign.discourseItems = Set.singleton $ Id.simpleIdToId x
}
propsOfTermSeq :: CL.TERM_SEQ -> Sign.Sign
propsOfTermSeq s = case s of
CL.Term_seq term -> propsOfTerm term
CL.Seq_marks sqm -> Sign.Sign {
Sign.items = Set.singleton $ Id.simpleIdToId sqm,
Sign.discourseItems = Set.singleton $ Id.simpleIdToId sqm
}
uniteMap :: (a -> Sign.Sign) -> [a] -> Sign
uniteMap p = List.foldl (\ sig -> Sign.unite sig . p)
Sign.emptySig
basicCommonLogicAnalysis :: (CL.BASIC_SPEC, Sign.Sign, a)
-> Result (CL.BASIC_SPEC,
ExtSign Sign.Sign Symbol.Symbol,
[AS_Anno.Named CL.TEXT_MRS])
basicCommonLogicAnalysis (bs, sig, _) =
Result.Result [] $ if exErrs then Nothing else
Just (bs, ExtSign sigItems newSyms, sentences)
where
sigItems = makeSig bs sig
newSyms = Set.map Symbol.Symbol
$ Set.difference (items sigItems) $ items sig
bsform = makeFormulas bs sigItems
-- [DIAG_FORM] signature and list of sentences
sentences = map formula bsform
-- Annoted Sentences (Ax_), numbering, DiagError
exErrs = False
inducedFromMorphism :: Map.Map Symbol.Symbol Symbol.Symbol
-> Sign.Sign
-> Result.Result Morphism.Morphism
inducedFromMorphism m s = let
p = Map.fromList . map (\ (s1, s2) -> (symName s1, symName s2))
$ Map.toList m
t = Sign.emptySig { items = Set.map (applyMap p) $ items s }
in return $ mkMorphism s t p
-- negate sentence (text) - propagates negation to sentences
negForm :: CL.TEXT_MRS -> CL.TEXT_MRS
negForm (t,mrs) = (negForm_txt t,mrs)
negForm_txt :: CL.TEXT -> CL.TEXT
negForm_txt t = case t of
CL.Text phrs r -> CL.Text (map negForm_phr phrs) r
CL.Named_text n txt r -> CL.Named_text n (negForm_txt txt) r
-- negate phrase - propagates negation to sentences
negForm_phr :: CL.PHRASE -> CL.PHRASE
negForm_phr phr = case phr of
CL.Module m -> CL.Module $ negForm_mod m
CL.Sentence s -> CL.Sentence $ negForm_sen s
CL.Comment_text c t r -> CL.Comment_text c (negForm_txt t) r
x -> x
-- negate module - propagates negation to sentences
negForm_mod ::CL.MODULE -> CL.MODULE
negForm_mod m = case m of
CL.Mod n t r -> CL.Mod n (negForm_txt t) r
CL.Mod_ex n exs t r -> CL.Mod_ex n exs (negForm_txt t) r
-- negate sentence
negForm_sen :: CL.SENTENCE -> CL.SENTENCE
negForm_sen f = case f of
CL.Quant_sent _ r -> CL.Bool_sent (CL.Negation f) r
CL.Bool_sent bs r -> case bs of
CL.Negation s -> s
_ -> CL.Bool_sent (CL.Negation f) r
_ -> CL.Bool_sent (CL.Negation f) Id.nullRange