SetColimit.hs revision 5418aa59492005c2ca40436ab84c4029cd2922a5
{- |
Module : $Header$
Description : colimit of an arbitrary diagram in Set
Copyright : (c) Mihai Codescu, and Uni Bremen 2002-2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : mcodescu@informatik.uni-bremen.de
Stability : provisional
Portability : portable
Computes the colimit of an arbitrary diagram in Set:
- the set is the disjoint union of all sets in the diagram
(which we obtain by pairing elements with the node number)
factored by the equivalence generated by the pairs (x, f_i(x)),
with i an arrow in the diagram
- structural morphisms are factorizations
-}
module Common.SetColimit(
computeColimitSet,
addIntToSymbols
)
where
import Common.Id
import Common.Lib.Graph
import Common.Lib.Rel (leqClasses)
import Data.Graph.Inductive.Graph
import qualified Data.Map as Map
import qualified Data.Set as Set
compose :: (Ord a) => Set.Set (a, Int) ->
Map.Map (a, Int) (a, Int) ->
Map.Map (a, Int) (a, Int) ->
Map.Map (a, Int) (a, Int)
compose s f g = Set.fold ( \ i h ->
let
i' = Map.findWithDefault i i f
j = Map.findWithDefault i' i' g in
if i == j then h else Map.insert i j h)
Map.empty s
coeq :: (Ord a) =>
Set.Set (a, Int) -> Set.Set (a, Int) ->
Map.Map (a, Int) (a, Int) -> Map.Map (a, Int) (a, Int) ->
(Set.Set (a, Int), Map.Map (a,Int) (a, Int))
coeq sSet tSet f1 f2 =
case Set.elems sSet of
[] -> (tSet, Map.empty)
x:xs -> if null xs then let
f1x = Map.findWithDefault x x f1
f2x = Map.findWithDefault x x f2
in if f1x == f2x then (tSet, Map.empty)
else (Set.difference tSet $ Set.singleton f2x,
Map.fromList [(f2x, f1x)])
else let
a1 = Set.singleton x
a2 = Set.difference sSet a1
(c, cf) = coeq a1 tSet f1 f2
cf1 = compose a2 f1 cf
cf2 = compose a2 f2 cf
(d, df) = coeq a2 c cf1 cf2
coeqf = compose tSet cf df
in (d, coeqf)
computeColimitSet :: (Ord a) =>
Gr (Set.Set a) (Int, Map.Map a a) ->
(Set.Set (a, Node), Map.Map Node (Map.Map a (a, Node)))
computeColimitSet graph = let
unionSet = foldl Set.union Set.empty $
map (\(n, s) -> Set.map (\x -> (x, n)) s) $ labNodes graph
inclMap = Map.fromAscList $ map (\ (n, _) ->(n, Map.empty)) $ labNodes graph
(colim, morMap) = computeCoeqs graph (unionSet, inclMap) $ labEdges graph
morMap' = Map.map
(\f -> Map.fromAscList $ map (\((x,_),z) -> (x,z))$
Map.toList f)
morMap
in (colim, morMap')
computeCoeqs :: (Ord a) =>
Gr (Set.Set a) (Int, Map.Map a a) ->
(Set.Set (a, Node), Map.Map Node (Map.Map (a, Node) (a, Node))) ->
[LEdge (Int, Map.Map a a)] ->
(Set.Set (a, Node), Map.Map Node (Map.Map (a, Node) (a, Node)))
computeCoeqs graph (colim, morMap) edgeList =
case edgeList of
[] -> (colim, morMap)
(sn, tn, (_, f)):edges' -> let
Just sset = lab graph sn
f1 = morMap Map.! sn
f' = Map.fromList $ map (\x -> ((x,sn),(Map.findWithDefault x x f, tn))) $
Set.toList sset
f2 = Map.map (\x -> Map.findWithDefault x x (morMap Map.! tn)) f'
(colim', coeqMor) = coeq (Set.map (\x -> (x, sn)) sset) colim f1 f2
morMap' = Map.fromList $
map (\(n, g) ->let
Just nset = lab graph n
in(n, Map.fromAscList $
map (\x -> let
y = Map.findWithDefault x x g
in (x,Map.findWithDefault y y coeqMor)) $
Set.toList $ Set.map (\x-> (x,n)) nset ))
$ Map.toList morMap
in computeCoeqs graph (colim', morMap') edges'
class (Eq a, Ord a) => SymbolName a where
addIntAsSuffix :: (a, Int) -> a
instance SymbolName Id where
addIntAsSuffix (x,y) = appendNumber x y
addIntToSymbols :: (SymbolName a) =>
(Set.Set (a, Node), Map.Map Node (Map.Map a (a, Node))) ->
(Set.Set a, Map.Map Node (Map.Map a a))
addIntToSymbols (set, fun) = let
fstEqual (x1,_) (x2,_) = x1 == x2
partList pairSet = leqClasses fstEqual pairSet
namePartitions elemList f0 s1 f1 = case elemList of
[] -> (s1, f1)
p:ps -> if length p == 1 then
-- a single element with this name,it can be kept
let s2 = Set.insert (fst $ head p) s1
updateF node = Map.union (Map.findWithDefault (error "f1") node f1) $
Map.fromList $ map (\x -> (x, fst $ head p)) $
filter (\x -> Map.findWithDefault (error "fo(node)") x
(Map.findWithDefault (error "f0") node f0)
== head p) $
Map.keys $ Map.findWithDefault (error "f0")
node f0
f2 = Map.fromList $ zip (Map.keys f0) $ map updateF $ Map.keys f0
in namePartitions ps f0 s2 f2
else
--several elements with same name, the number is added at the end
let s2 = Set.union s1 $ Set.fromList $ map addIntAsSuffix p
updateF node = Map.union (Map.findWithDefault (error "f1") node f1) $
Map.fromList $
map ( \x -> (x, addIntAsSuffix $
Map.findWithDefault (error "addSuffixToId") x
(Map.findWithDefault (error "f0") node f0))) $
filter (\x -> (Map.findWithDefault (error "fo(node)") x
(Map.findWithDefault (error "f0") node f0))
`elem` p) $
Map.keys $ Map.findWithDefault (error "f0") node f0
f2 = Map.fromList $ zip (Map.keys f0) $ map updateF $ Map.keys f0
in namePartitions ps f0 s2 f2
in namePartitions (partList set) fun (Set.empty) $
Map.fromList $ zip (Map.keys fun) (repeat Map.empty)