RelCheck.hs revision c1e44804ab02be8fa720960cfd1f2355dd8c0bbe
{-# LANGUAGE FlexibleInstances #-}
{- |
Module : $Header$
Description : a couple of test cases mainly for intransKernel
Copyright : (c) Uni Bremen 2003-2005
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : non-portable (Arbitrary instance not of form (T a b c))
a couple of test cases mainly for intransKernel
-}
module Common.Lib.RelCheck where
import Test.QuickCheck
import Common.Lib.Rel
import qualified Common.Lib.MapSet as MapSet
import qualified Data.Map as Map
import qualified Data.Set as Set
instance Arbitrary (Rel Int) where
arbitrary = do
l0 <- arbitrary
l1 <- arbitrary
l2 <- arbitrary
l3 <- arbitrary
l4 <- arbitrary
let r = fromList (l0 ++ l1 ++ l2 ++ l3 ++ l4)
keys = Map.keys $ toMap r
x <- choose (0, length keys - 1)
y <- choose (0, length keys - 3)
z <- choose (0, length keys - 1)
x1 <- choose (0, length keys - 2)
y1 <- choose (0, length keys - 1)
k <- choose (0, length keys - 3)
let r' =
insertPair x1 y1 $
insertPair y1 x1 $
insertPair x y $
insertPair x z $
insertPair z y $
insertPair y x $ insertKey k r
return r'
prop_IntransKernelTransClosure = prpTransClosure intransKernel
prpTransClosure intrKern r =
(length (sccOfClosure rel) > 1 &&
length (Map.keys $ toMap r) > 6) ==>
classify (Set.size (toSet $ irreflex r) < 10) "trivial"
(collect (length (Map.keys $ toMap r))
(rel == transClosure (intrKern rel)))
where rel = transClosure r :: Rel Int
tr = transClosure test1
test1 = fromList (zip [(1 :: Int) .. 7] [2 .. 8] ++
[(2, 1), (12, 11), (4, 12), (12, 13), (13, 12),
(11, 14), (14, 11), (-1, 14), (14, -1), (100, 1), (2, 100)])
test2 = fromList [(1, 2 :: Int), (2, 3), (3, 2), (3, 5), (3, 4), (1, 4), (4, 5),
(4, 6), (5, 6), (6, 7), (6, 8), (7, 9), (8, 9)]
test3 = delete 100 1 (test1 `union` fromList (zip [7 .. 100] [8 .. 101]))
test4 = test3 `union` fromList (zip [100 .. 300] [101 .. 301])
test5 = test4 `union` (test2 `union` fromList (zip [301 .. 500] [302, 501]))
test6 = fromList [(2, 1 :: Int), (3, 1), (5, 2), (5, 4), (4, 5), (6, 3), (7, 3)
, (8, 5), (8, 6), (8, 7), (9, 8), (8, 9), (9, 5), (2, -1), (-11, -10)
, (-12, -10), (-1, -3)]
test7 = fromList [(2, 1), (3, 1), (4, 2), (5, 2), (6, 3), (7, 6)
, (8, 6 :: Int), (-7, 7), (7, -7)]
prpEq :: (Rel Int -> Rel Int) -> (Rel Int -> Rel Int) -> Rel Int -> Property
prpEq relFun1 relFun2 rel = let clos = transClosure rel in
(Set.size (nodes rel) > 6 &&
clos /= rel && clos /= irreflex clos && transpose rel /= rel) ==>
classify (Set.size (toSet rel) < 10) "trivial"
(collect (Set.size (nodes rel))
(relFun1 rel == relFun2 rel))
prop_irreflexReflexive = prpEq reflexive (reflexive . irreflex . reflexive)
prop_reflexivIrreflex = prpEq irreflex (irreflex . reflexive . irreflex)
prop_TransposeTranspose = prpEq rmNullSets (transpose . transpose)
prop_IrreflexTranspose =
prpEq (rmNullSets . irreflex . transpose) (transpose . irreflex)
prop_TransClosureTranspose =
prpEq (transClosure . transpose) (transpose . transClosure)
prop_TransClosureIntransKernel = prpEq (transClosure . irreflex)
(transClosure . intransKernel . transClosure . irreflex)