Rel.hs revision c7a5be56ec7eda5cd9d7368c28d0555a0ea1fbc7
{- |
Module : $Header$
Description : Relations, based on maps
Copyright : (c) Uni Bremen 2003-2005
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
supply a simple data type for (precedence or subsort) relations. A
relation is conceptually a set of (ordered) pairs,
but the hidden implementation is based on a map of sets.
An alternative view is that of a directed Graph
without isolated nodes.
'Rel' is a directed graph with elements (Ord a) as (uniquely labelled) nodes
and (unlabelled) edges (with a multiplicity of at most one).
Usage: start with an 'empty' relation, 'insert' edges, and test for
an edge 'member' (before or after calling 'transClosure').
It is possible to insert self edges or bigger cycles.
Checking for a 'path' corresponds to checking for a member in the
transitive (possibly non-reflexive) closure. A further 'insert', however,
may destroy the closedness property of a relation.
The functions 'image', and 'setInsert' are utility functions
for plain maps involving sets.
-}
module Common.Lib.Rel
( Rel, map
, isSubrelOf, path
, succs, predecessors, irreflex, sccOfClosure
, transClosure, fromList, toList, image, toPrecMap
, intransKernel, mostRight, restrict, delSet
, toSet, fromSet, topSort, nodes, collaps
, transReduce, setToMap
, locallyFiltered
, flatSet, partSet, partList, leqClasses
) where
import Prelude hiding (map, null)
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Data.List as List
import qualified Common.Lib.MapSet as MapSet
type Rel a = MapSet.MapSet a a
-- | is the first relation a sub-relation of the second
isSubrelOf :: Ord a => Rel a -> Rel a -> Bool
isSubrelOf = MapSet.isSubmapOf
-- | get direct successors
succs :: Ord a => Rel a -> a -> Set.Set a
succs = flip MapSet.lookup
-- | get all transitive successors
reachable :: Ord a => Rel a -> a -> Set.Set a
reach e s = if Set.member e s then s
else Set.fold reach (Set.insert e s) $ succs r e
-- | predecessors of one node in the given set of a nodes
preds m a = Set.filter ( \ s -> MapSet.setMember s a m)
-- | get direct predecessors inefficiently
predecessors :: Ord a => Rel a -> a -> Set.Set a
predecessors r a = let m = MapSet.toMap r in preds m a $ Map.keysSet m
-- | test for 'member' or transitive membership (non-empty path)
path :: Ord a => a -> a -> Rel a -> Bool
path a b r = Set.member b $ reachable r a
-- | compute transitive closure (make all transitive members direct members)
transClosure :: Ord a => Rel a -> Rel a
transClosure r = MapSet.fromMap . Map.mapWithKey ( \ k _ -> reachable r k)
$ MapSet.toMap r
-- | make relation irreflexive
irreflex :: Ord a => Rel a -> Rel a
-- | compute strongly connected components for a transitively closed relation
sccOfClosureM m =
if Map.null m then []
else let ((k, v), p) = Map.deleteFindMin m in
if Set.member k v then -- has a cycle
let c = preds m k v in -- get the cycle
c : sccOfClosureM (Set.fold Map.delete p c)
else sccOfClosureM p
-- | compute strongly connected components for a transitively closed relation
sccOfClosure :: Ord a => Rel a -> [Set.Set a]
sccOfClosure = sccOfClosureM . MapSet.toMap
-- | restrict to elements not in the input set
delSetM s m = Map.map (Set.\\ s) m Map.\\ setToMap s
-- | restrict to elements not in the input set
delSet :: Ord a => Set.Set a -> Rel a -> Rel a
delSet s = MapSet.fromMap . delSetM s . MapSet.toMap
{- | restrict strongly connected components to its minimal representative
(input sets must be non-null). Direct cycles may remain. -}
collaps :: Ord a => [Set.Set a] -> Rel a -> Rel a
{- | transitive reduction (minimal relation with the same transitive closure)
of a transitively closed DAG (i.e. without cycles)! -}
transReduce :: Ord a => Rel a -> Rel a
transReduce r = let m = MapSet.toMap r in MapSet.fromMap $
-- keep all (i, j) in rel for which no c with (i, c) and (c, j) in rel
Map.mapWithKey ( \ i s -> let d = setToMap $ Set.delete i s in
Set.filter ( \ j ->
$ Map.intersection m $ Map.delete j d) s) m
-- | convert a list of ordered pairs to a relation
fromList :: Ord a => [(a, a)] -> Rel a
fromList = foldr (uncurry MapSet.insert) MapSet.empty
-- | convert a relation to a list of ordered pairs
toList :: Rel a -> [(a, a)]
toList = concatMap (\ (a, bs) -> List.map (\ b -> (a, b)) bs)
-- | the image of a map
-- | map the values of a relation
map :: (Ord a, Ord b) => (a -> b) -> Rel a -> Rel b
map f = MapSet.foldWithKey
( \ a b -> MapSet.insert (f a) $ f b) MapSet.empty
-- | Restriction of a relation under a set
restrict :: Ord a => Rel a -> Set.Set a -> Rel a
restrict r s = delSet (nodes r Set.\\ s) r
-- | convert a relation to a set of ordered pairs
toSet :: (Ord a) => Rel a -> Set.Set (a, a)
toSet = Set.fromDistinctAscList . toList
-- | convert a set of ordered pairs to a relation
fromSet :: (Ord a) => Set.Set (a, a) -> Rel a
fromSet = fromAscList . Set.toList
-- | convert a sorted list of ordered pairs to a relation
fromAscList :: (Ord a) => [(a, a)] -> Rel a
fromAscList = MapSet.fromDistinctMap
. List.map ( \ l -> (fst (head l),
Set.fromDistinctAscList $ List.map snd l))
. List.groupBy ( \ (a, _) (b, _) -> a == b)
-- | all nodes of the edges
nodes :: Ord a => Rel a -> Set.Set a
topSortDAGM m = if Map.null m then [] else
let es = MapSet.setElems m
ml = Map.keysSet m Set.\\ es -- most left
m2 = delSetM ml m
rs = es Set.\\ Map.keysSet m2 -- re-insert loose ends
topSortDAG :: Ord a => Rel a -> [Set.Set a]
topSortDAG = topSortDAGM . MapSet.toMap
-- | topologically sort a closed relation (ignore isolated cycles)
topSort :: Ord a => Rel a -> [Set.Set a]
topSort r = let cs = sccOfClosure r in
List.map (expandCycle cs) $ topSortDAG $ irreflex $ collaps cs r
{- | Construct a precedence map from a closed relation. Indices range
between 1 and the second value that is output. -}
toPrecMap :: Ord a => Rel a -> (Map.Map a Int, Int)
toPrecMap = foldl ( \ (m1, c) s -> let n = c + 1 in
(Set.fold (`Map.insert` n) m1 s, n))
(Map.empty, 0) . topSort
-- | find the cycle and add it to the result set
expandCycle cs s = case cs of
[] -> s
c : r -> if Set.null c then error "Common.Lib.Rel.expandCycle" else
let (a, b) = Set.deleteFindMin c in
if Set.member a s then Set.union b s else expandCycle r s
{- | gets the most right elements of the irreflexive relation,
unless no hierarchy is left then isolated nodes are output -}
mostRightOfCollapsed :: Ord a => Rel a -> Set.Set a
mostRightOfCollapsed r = if MapSet.null r then Set.empty
else let ir = irreflex r
mr = MapSet.elems ir Set.\\ MapSet.keysSet ir
((==) . Set.singleton) $ MapSet.toMap r
else mr
{- |
find s such that x in s => forall y . yRx or not yRx and not xRy
* precondition: (transClosure r == r)
* strongly connected components (cycles) are treated as a compound node
-}
mostRight :: Ord a => Rel a -> Set.Set a
mostRight r = let
cs = sccOfClosure r
in expandCycle cs (mostRightOfCollapsed $ collaps cs r)
{- |
intransitive kernel of a reflexive and transitive closure
* precondition: (transClosure r == r)
* cycles are uniquely represented (according to Ord)
-}
intransKernel :: Ord a => Rel a -> Rel a
intransKernel r =
let cs = sccOfClosure r
in foldr addCycle (transReduce $ collaps cs r) cs
-- | add a cycle given by a set in the collapsed node
addCycle :: Ord a => Set.Set a -> Rel a -> Rel a
addCycle c r = if Set.null c then error "Common.Lib.Rel.addCycle" else
let (a, b) = Set.deleteFindMin c
(m, d) = Set.deleteFindMax c
zip (Set.toList d) (Set.toList b)
{- | calculates if two given elements have a common left element
* if one of the arguments is not present False is returned
-}
haveCommonLeftElem :: Ord a => a -> a -> Rel a -> Bool
haveCommonLeftElem t1 t2 =
{- | partitions a set into a list of disjoint non-empty subsets
determined by the given function as equivalence classes -}
partSet f = List.map Set.fromList . leqClasses f
{- | partitions a list into a list of disjoint non-empty lists
determined by the given function as equivalence classes -}
partList :: (a -> a -> Bool) -> [a] -> [[a]]
partList f l = case l of
[] -> []
x : r -> let
(ds, es) = List.partition (not . any (f x)) $ partList f r
in (x : concat es) : ds
-- | Divide a Set (List) into equivalence classes w.r.t. eq
leqClasses :: Ord a => (a -> a -> Bool) -> Set.Set a -> [[a]]
leqClasses f = partList f . Set.toList
{- | flattens a list of non-empty sets and uses the minimal element of
each set to represent the set -}
then error "Common.Lib.Rel.flatSet"
else Set.findMin s)
{- | checks if a given relation is locally filtered
* precondition: the relation must already be closed by transitive closure
-}
locallyFiltered :: Ord a => Rel a -> Bool
locallyFiltered rel = check . flatSet . partSet iso $ mostRight rel
where iso x y = MapSet.member x y rel && MapSet.member y x rel
check s = Set.null s ||
Set.fold (\ y ->
(&& not (haveCommonLeftElem x y rel))) True s'
&& check s'
where (x, s') = Set.deleteFindMin s