Rel.hs revision b87efd3db0d2dc41615ea28669faf80fc1b48d56
{- |
Module : $Header$
Description : Relations, based on maps
Copyright : (c) Uni Bremen 2003-2005
License : GPLv2 or higher
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
supply a simple data type for (precedence or subsort) relations. A
relation is conceptually a set of (ordered) pairs,
but the hidden implementation is based on a map of sets.
An alternative view is that of a directed Graph
without isolated nodes.
'Rel' is a directed graph with elements (Ord a) as (uniquely labelled) nodes
and (unlabelled) edges (with a multiplicity of at most one).
Usage: start with an 'empty' relation, 'insert' edges, and test for
an edge 'member' (before or after calling 'transClosure').
It is possible to insert self edges or bigger cycles.
Checking for a 'path' corresponds to checking for a member in the
transitive (possibly non-reflexive) closure. A further 'insert', however,
may destroy the closedness property of a relation.
The functions 'image', and 'setInsert' are utility functions
for plain maps involving sets.
-}
module Common.Lib.Rel
( Rel(), empty, null, insert, member, toMap, map
, union, intersection, isSubrelOf, difference, path
, delete, succs, predecessors, irreflex, sccOfClosure
, transClosure, fromList, toList, image, toPrecMap
, intransKernel, mostRight, restrict, delSet
, toSet, fromSet, topSort, nodes, collaps
, transpose, transReduce, setInsert, setToMap
, fromDistinctMap, locallyFiltered
, flatSet, partSet, partList, leqClasses
) where
import Prelude hiding (map, null)
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Data.List as List
-- the invariant is that set values are never empty
fromDistinctMap = Rel
-- | the empty relation
empty :: Rel a
empty = Rel Map.empty
-- | test for 'empty'
null :: Rel a -> Bool
null (Rel m) = Map.null m
-- | difference of two relations
difference :: Ord a => Rel a -> Rel a -> Rel a
difference a b = fromSet (toSet a Set.\\ toSet b)
-- | union of two relations
union :: Ord a => Rel a -> Rel a -> Rel a
union a b = fromSet $ Set.union (toSet a) $ toSet b
-- | intersection of two relations
intersection :: Ord a => Rel a -> Rel a -> Rel a
intersection a b = fromSet $ Set.intersection (toSet a) $ toSet b
-- | is the first relation a sub-relation of the second
isSubrelOf :: Ord a => Rel a -> Rel a -> Bool
isSubrelOf a b = Set.isSubsetOf (toSet a) $ toSet b
-- | insert an ordered pair
insert :: Ord a => a -> a -> Rel a -> Rel a
insert a b = Rel . setInsert a b . toMap
-- | delete an ordered pair
delete :: Ord a => a -> a -> Rel a -> Rel a
delete a b (Rel m) =
-- | test for an (previously inserted) ordered pair
member :: Ord a => a -> a -> Rel a -> Bool
member a b r = Set.member b $ succs r a
-- | get direct successors
succs :: Ord a => Rel a -> a -> Set.Set a
succs (Rel m) a = Map.findWithDefault Set.empty a m
-- | get all transitive successors
reachable :: Ord a => Rel a -> a -> Set.Set a
reach e s = if Set.member e s then s
else Set.fold reach (Set.insert e s) $ succs r e
-- | predecessors of one node in the given set of a nodes
preds r a = Set.filter ( \ s -> member s a r)
-- | get direct predecessors inefficiently
predecessors :: Ord a => Rel a -> a -> Set.Set a
predecessors r@(Rel m) a = preds r a $ Map.keysSet m
-- | test for 'member' or transitive membership (non-empty path)
path :: Ord a => a -> a -> Rel a -> Bool
path a b r = Set.member b $ reachable r a
-- | compute transitive closure (make all transitive members direct members)
transClosure :: Ord a => Rel a -> Rel a
transClosure r@(Rel m) = Rel $ Map.mapWithKey ( \ k _ -> reachable r k) m
-- | get reverse relation
transpose :: Ord a => Rel a -> Rel a
transpose = fromList . List.map ( \ (a, b) -> (b, a)) . toList
-- | establish the invariant
rmNull = Map.filter (not . Set.null)
-- | make relation irreflexive
irreflex :: Ord a => Rel a -> Rel a
irreflex (Rel m) = Rel $ rmNull $ Map.mapWithKey Set.delete m
-- | compute strongly connected components for a transitively closed relation
sccOfClosure :: Ord a => Rel a -> [Set.Set a]
sccOfClosure r@(Rel m) =
if Map.null m then []
else let ((k, v), p) = Map.deleteFindMin m in
if Set.member k v then -- has a cycle
let c = preds r k v in -- get the cycle
c : sccOfClosure (Rel $ Set.fold Map.delete p c)
else sccOfClosure (Rel p)
{- | restrict strongly connected components to its minimal representative
(input sets must be non-null). Direct cycles may remain. -}
collaps :: Ord a => [Set.Set a] -> Rel a -> Rel a
{- | transitive reduction (minimal relation with the same transitive closure)
of a transitively closed DAG (i.e. without cycles)! -}
transReduce :: Ord a => Rel a -> Rel a
transReduce (Rel m) = Rel $ rmNull $
-- keep all (i, j) in rel for which no c with (i, c) and (c, j) in rel
Map.mapWithKey ( \ i s -> let d = setToMap $ Set.delete i s in
Set.filter ( \ j ->
$ Map.intersection m $ Map.delete j d) s) m
-- | convert a list of ordered pairs to a relation
fromList :: Ord a => [(a, a)] -> Rel a
fromList = foldr (uncurry insert) empty
-- | convert a relation to a list of ordered pairs
toList :: Rel a -> [(a, a)]
toList (Rel m) = concatMap (\ (a , bs) -> List.map ( \ b -> (a, b) )
(Set.toList bs)) $ Map.toList m
instance (Show a, Ord a) => Show (Rel a) where
show = show . Set.fromDistinctAscList . toList
-- | Insert into a set of values
setInsert kx x t =
-- | the image of a map
image f s =
where ins x = case Map.lookup x f of
Nothing -> id
Just y -> Set.insert y
-- | map the values of a relation
map :: (Ord a, Ord b) => (a -> b) -> Rel a -> Rel b
map f (Rel m) = Rel $ Map.foldWithKey
-- | Restriction of a relation under a set
restrict :: Ord a => Rel a -> Set.Set a -> Rel a
restrict r s = delSet (nodes r Set.\\ s) r
-- | restrict to elements not in the input set
delSet :: Ord a => Set.Set a -> Rel a -> Rel a
delSet s (Rel m) = Rel $ rmNull (Map.map (Set.\\ s) m) Map.\\ setToMap s
-- | convert a relation to a set of ordered pairs
toSet :: (Ord a) => Rel a -> Set.Set (a, a)
toSet = Set.fromDistinctAscList . toList
-- | convert a set of ordered pairs to a relation
fromSet :: (Ord a) => Set.Set (a, a) -> Rel a
fromSet = fromAscList . Set.toList
-- | convert a sorted list of ordered pairs to a relation
fromAscList :: (Ord a) => [(a, a)] -> Rel a
fromAscList = Rel . Map.fromDistinctAscList
. List.map ( \ l -> (fst (head l),
Set.fromDistinctAscList $ List.map snd l))
. List.groupBy ( \ (a, _) (b, _) -> a == b)
-- | all nodes of the edges
nodes :: Ord a => Rel a -> Set.Set a
nodes (Rel m) = Set.union (Map.keysSet m) $ elemsSet m
elemsSet = Set.unions . Map.elems
{- | Construct a precedence map from a closed relation. Indices range
between 1 and the second value that is output. -}
toPrecMap :: Ord a => Rel a -> (Map.Map a Int, Int)
toPrecMap = foldl ( \ (m1, c) s -> let n = c + 1 in
(Set.fold (flip Map.insert n) m1 s, n))
(Map.empty, 0) . topSort
topSortDAG :: Ord a => Rel a -> [Set.Set a]
topSortDAG r@(Rel m) = if Map.null m then [] else
let es = elemsSet m
ml = Map.keysSet m Set.\\ es -- most left
Rel m2 = delSet ml r
rs = es Set.\\ Map.keysSet m2 -- re-insert loose ends
-- | topologically sort a closed relation (ignore isolated cycles)
topSort :: Ord a => Rel a -> [Set.Set a]
topSort r = let cs = sccOfClosure r in
List.map (expandCycle cs) $ topSortDAG $ irreflex $ collaps cs r
-- | find the cycle and add it to the result set
expandCycle cs s = case cs of
[] -> s
c : r -> if Set.null c then error "Common.Lib.Rel.expandCycle" else
let (a, b) = Set.deleteFindMin c in
if Set.member a s then Set.union b s else expandCycle r s
{- | gets the most right elements of the irreflexive relation,
unless no hierarchy is left then isolated nodes are output -}
mostRightOfCollapsed :: Ord a => Rel a -> Set.Set a
else let Rel im = irreflex r
mr = elemsSet im Set.\\ Map.keysSet im
((==) . Set.singleton) m
else mr
{- |
find s such that x in s => forall y . yRx or not yRx and not xRy
* precondition: (transClosure r == r)
* strongly connected components (cycles) are treated as a compound node
-}
mostRight :: (Ord a) => Rel a -> (Set.Set a)
mostRight r = let
cs = sccOfClosure r
in expandCycle cs (mostRightOfCollapsed $ collaps cs r)
{- |
intransitive kernel of a reflexive and transitive closure
* precondition: (transClosure r == r)
* cycles are uniquely represented (according to Ord)
-}
intransKernel :: Ord a => Rel a -> Rel a
intransKernel r =
let cs = sccOfClosure r
in foldr addCycle (transReduce $ collaps cs r) cs
-- add a cycle given by a set in the collapsed node
addCycle :: Ord a => Set.Set a -> Rel a -> Rel a
addCycle c r = if Set.null c then error "Common.Lib.Rel.addCycle" else
let (a, b) = Set.deleteFindMin c
(m, d) = Set.deleteFindMax c
in insert m a $ foldr (uncurry insert) (delete a a r) $
zip (Set.toList d) (Set.toList b)
{- | calculates if two given elements have a common left element
* if one of the arguments is not present False is returned
-}
haveCommonLeftElem :: (Ord a) => a -> a -> Rel a -> Bool
haveCommonLeftElem t1 t2 =
-- | partitions a set into a list of disjoint non-empty subsets
-- determined by the given function as equivalence classes
partSet f = List.map Set.fromList . leqClasses f
-- | partitions a list into a list of disjoint non-empty lists
-- determined by the given function as equivalence classes
partList :: (a -> a -> Bool) -> [a] -> [[a]]
partList f l = case l of
[] -> []
x : r -> let
(ds, es) = List.partition (List.null . filter (f x)) $ partList f r
in (x : concat es) : ds
-- | Divide a Set (List) into equivalence classes w.r.t. eq
leqClasses :: Ord a => (a -> a -> Bool) -> Set.Set a -> [[a]]
leqClasses f = partList f . Set.toList
-- | flattens a list of non-empty sets and uses the minimal element of
-- each set to represent the set
then error "Common.Lib.Rel.flatSet"
else Set.findMin s)
{- | checks if a given relation is locally filtered
* precondition: the relation must already be closed by transitive closure
-}
locallyFiltered :: (Ord a) => Rel a -> Bool
locallyFiltered rel = (check . flatSet . partSet iso . mostRight) rel
where iso x y = member x y rel && member y x rel
check s = Set.null s ||
Set.fold (\ y ->
(&& not (haveCommonLeftElem x y rel))) True s'
&& check s'
where (x, s') = Set.deleteFindMin s