Rel.hs revision 7d46b763f987d368033e39b47f8c35332a6488c3
{- |
Module : $Header$
Copyright : (c) Uni Bremen 2003-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : provisional
Portability : portable
supply a simple data type for (precedence or subsort) relations. A
relation is conceptually a set of (ordered) pairs,
but the hidden implementation is based on a map of sets.
An alternative view is that of a directed Graph
without isolated nodes.
'Rel' is a directed graph with elements (Ord a) as (uniquely labelled) nodes
and (unlabelled) edges (with a multiplicity of at most one).
Usage: start with an 'empty' relation, 'insert' edges, and test for
an edge 'member' (before or after calling 'transClosure').
It is possible to insert self edges or bigger cycles.
Checking for a 'path' corresponds to checking for a member in the
transitive (possibly non-reflexive) closure. A further 'insert', however,
may destroy the closedness property of a relation.
The functions 'image', 'keysSet' and 'setInsert' are utility functions
for plain maps involving sets.
-}
module Common.Lib.Rel (Rel(), empty, null,
insert, member, toMap, map,
union , isSubrelOf, difference, path, delete,
succs, predecessors, irreflex, sccOfClosure,
transClosure, fromList, toList, image,
intransKernel, mostRight,
restrict, toSet, fromSet, topSort, nodes,
transpose, transReduce, setInsert, keysSet,
haveCommonLeftElem, fromDistinctMap,
locallyFiltered, flatSet, partSet) where
import Prelude hiding (map, null)
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import qualified Data.List as List
data Rel a = Rel { toMap :: Map.Map a (Set.Set a) } deriving Eq
-- the invariant is that set values are never empty
fromDistinctMap :: Map.Map a (Set.Set a) -> Rel a
fromDistinctMap = Rel
-- | the empty relation
empty :: Rel a
empty = Rel Map.empty
-- | test for 'empty'
null :: Rel a -> Bool
null (Rel m) = Map.null m
-- | difference of two relations
difference :: Ord a => Rel a -> Rel a -> Rel a
difference a b = fromSet (toSet a Set.\\ toSet b)
-- | union of two relations
union :: Ord a => Rel a -> Rel a -> Rel a
union a b = fromSet $ Set.union (toSet a) $ toSet b
-- | is the first relation a sub-relation of the second
isSubrelOf :: Ord a => Rel a -> Rel a -> Bool
isSubrelOf a b = Set.isSubsetOf (toSet a) $ toSet b
-- | insert an ordered pair
insert :: Ord a => a -> a -> Rel a -> Rel a
insert a b (Rel m) = Rel $ Map.insert a
(Set.insert b $ Map.findWithDefault Set.empty a m) m
-- | delete an ordered pair
delete :: Ord a => a -> a -> Rel a -> Rel a
delete a b (Rel m) =
let t = Set.delete b $ Map.findWithDefault Set.empty a m in
Rel $ if Set.null t then Map.delete a m else Map.insert a t m
-- | test for an (previously inserted) ordered pair
member :: Ord a => a -> a -> Rel a -> Bool
member a b r = Set.member b $ succs r a
-- | get direct successors
succs :: Ord a => Rel a -> a -> Set.Set a
succs (Rel m) a = Map.findWithDefault Set.empty a m
-- | get all transitive successors
reachable :: Ord a => Rel a -> a -> Set.Set a
reachable r a = Set.fold reach Set.empty $ succs r a where
reach e s = if Set.member e s then s
else Set.fold reach (Set.insert e s) $ succs r e
-- | predecessors of one node in the given set of a nodes
preds :: Ord a => Rel a -> a -> Set.Set a -> Set.Set a
preds r a = Set.filter ( \ s -> member s a r)
-- | get direct predecessors inefficiently
predecessors :: Ord a => Rel a -> a -> Set.Set a
predecessors r@(Rel m) a = preds r a $ keysSet m
-- | test for 'member' or transitive membership (non-empty path)
path :: Ord a => a -> a -> Rel a -> Bool
path a b r = Set.member b $ reachable r a
-- | compute transitive closure (make all transitive members direct members)
transClosure :: Ord a => Rel a -> Rel a
transClosure r@(Rel m) = Rel $ Map.mapWithKey ( \ k _ -> reachable r k) m
-- | get reverse relation
transpose :: Ord a => Rel a -> Rel a
transpose = fromList . List.map ( \ (a, b) -> (b, a)) . toList
-- | establish the invariant
rmNull :: Ord a => Map.Map a (Set.Set a) -> Map.Map a (Set.Set a)
rmNull = Map.filter (not . Set.null)
-- | make relation irreflexive
irreflex :: Ord a => Rel a -> Rel a
irreflex (Rel m) = Rel $ rmNull $ Map.mapWithKey (Set.delete) m
-- | compute strongly connected components for a transitively closed relation
sccOfClosure :: Ord a => Rel a -> [Set.Set a]
sccOfClosure r@(Rel m) =
if Map.null m then []
else let ((k, v), p) = Map.deleteFindMin m in
if Set.member k v then -- has a cycle
let c = preds r k v in -- get the cycle
c : sccOfClosure (Rel $ Set.fold Map.delete p c)
else sccOfClosure (Rel p)
{- | restrict strongly connected components to its minimal representative
(input sets must be non-null). Direct cycles may remain. -}
collaps :: Ord a => [Set.Set a] -> Rel a -> Rel a
collaps cs = delSet $ Set.unions $ List.map Set.deleteMin cs
setToMap :: Ord a => Set.Set a -> Map.Map a ()
setToMap s = Map.fromDistinctAscList $
List.map (\ a -> (a, ())) $ Set.toList s
{- | transitive reduction (minimal relation with the same transitive closure)
of a transitively closed DAG. -}
transReduce :: Ord a => Rel a -> Rel a
transReduce (Rel m) = Rel $ rmNull $
-- keep all (i, j) in rel for which no c with (i, c) and (c, j) in rel
Map.mapWithKey ( \ i s -> let d = setToMap $ Set.delete i s in
Set.filter ( \ j ->
Map.null $ Map.filter (Set.member j)
$ Map.intersection m $ Map.delete j d) s) m
-- | convert a list of ordered pairs to a relation
fromList :: Ord a => [(a, a)] -> Rel a
fromList = foldr (uncurry insert) empty
-- | convert a relation to a list of ordered pairs
toList :: Rel a -> [(a, a)]
toList (Rel m) = concatMap (\ (a , bs) -> List.map ( \ b -> (a, b) )
(Set.toList bs)) $ Map.toList m
instance (Show a, Ord a) => Show (Rel a) where
show = show . Set.fromDistinctAscList . toList
-- | Insert into a set of values
setInsert :: (Ord k, Ord a) => k -> a -> Map.Map k (Set.Set a)
-> Map.Map k (Set.Set a)
setInsert kx x t =
Map.insert kx (Set.insert x $ Map.findWithDefault Set.empty kx t) t
-- | the image of a map
image :: (Ord k, Ord a) => Map.Map k a -> Set.Set k -> Set.Set a
image f s =
Set.fold ins Set.empty s
where ins x = case Map.lookup x f of
Nothing -> id
Just y -> Set.insert y
-- | map the values of a relation
map :: (Ord a, Ord b) => (a -> b) -> Rel a -> Rel b
map f (Rel m) = Rel $ Map.foldWithKey
( \ a v -> Map.insertWith Set.union (f a) $ Set.map f v) Map.empty m
-- | Restriction of a relation under a set
restrict :: Ord a => Rel a -> Set.Set a -> Rel a
restrict r s = delSet (nodes r Set.\\ s) r
-- | restrict to elements not in the input set
delSet :: Ord a => Set.Set a -> Rel a -> Rel a
delSet s (Rel m) = Rel $ rmNull (Map.map (Set.\\ s) m) Map.\\ setToMap s
-- | convert a relation to a set of ordered pairs
toSet :: (Ord a) => Rel a -> Set.Set (a, a)
toSet = Set.fromDistinctAscList . toList
-- | convert a set of ordered pairs to a relation
fromSet :: (Ord a) => Set.Set (a, a) -> Rel a
fromSet s = fromAscList $ Set.toList s
-- | convert a sorted list of ordered pairs to a relation
fromAscList :: (Ord a) => [(a, a)] -> Rel a
fromAscList = Rel . Map.fromDistinctAscList
. List.map ( \ l -> (fst (head l),
Set.fromDistinctAscList $ List.map snd l))
. List.groupBy ( \ (a, _) (b, _) -> a == b)
-- | all nodes of the edges
nodes :: Ord a => Rel a -> Set.Set a
nodes (Rel m) = Set.union (keysSet m) $ elemsSet m
-- | The set of all keys of the map
keysSet :: Ord a => Map.Map a b -> Set.Set a
keysSet = Set.fromDistinctAscList . Map.keys
elemsSet :: Ord a => Map.Map a (Set.Set a) -> Set.Set a
elemsSet = Set.unions . Map.elems
topSortDAG :: Ord a => Rel a -> [Set.Set a]
topSortDAG r@(Rel m) = if Map.null m then [] else
let es = elemsSet m
ml = keysSet m Set.\\ es -- most left
Rel m2 = delSet ml r
rs = es Set.\\ keysSet m2 -- re-insert loose ends
in ml : topSortDAG (Rel $ Set.fold (flip Map.insert Set.empty) m2 rs)
-- | topologically sort a closed relation (ignore isolated cycles)
topSort :: Ord a => Rel a -> [Set.Set a]
topSort r = let cs = sccOfClosure r in
List.map (expandCycle cs) $ topSortDAG $ irreflex $ collaps cs r
-- | find the cycle and add it to the result set
expandCycle :: Ord a => [Set.Set a] -> Set.Set a -> Set.Set a
expandCycle [] s = s
expandCycle (c : r) s = if Set.null c then error "expandCycle" else
let (a, b) = Set.deleteFindMin c in
if Set.member a s then Set.union b s else expandCycle r s
{- | gets the most right elements of the irreflexive relation,
unless no hierarchy is left then isolated nodes are output -}
mostRightOfCollapsed :: Ord a => Rel a -> Set.Set a
mostRightOfCollapsed r@(Rel m) = if Map.null m then Set.empty
else let Rel im = irreflex r
mr = elemsSet im Set.\\ keysSet im
in if Set.null mr then keysSet $ Map.filterWithKey (\ k v ->
Set.singleton k == v) m
else mr
{--------------------------------------------------------------------
MostRight (Added by K.L.)
--------------------------------------------------------------------}
{- |
find s such that x in s => forall y . yRx or not yRx and not xRy
* precondition: (transClosure r == r)
* strongly connected components (cycles) are treated as a compound node
-}
mostRight :: (Ord a) => Rel a -> (Set.Set a)
mostRight r = let
cs = sccOfClosure r
in expandCycle cs (mostRightOfCollapsed $ collaps cs r)
{--------------------------------------------------------------------
intransitive kernel (Added by K.L.)
--------------------------------------------------------------------}
-- |
-- intransitive kernel of a reflexive and transitive closure
--
-- * precondition: (transClosure r == r)
--
-- * cycles are uniquely represented (according to Ord)
intransKernel :: Ord a => Rel a -> Rel a
intransKernel r =
let cs = sccOfClosure r
in foldr addCycle (transReduce $ collaps cs r) cs
-- add a cycle given by a set in the collapsed node
addCycle :: Ord a => Set.Set a -> Rel a -> Rel a
addCycle c r = if Set.null c then error "addCycle" else
let (a, b) = Set.deleteFindMin c
(m, d) = Set.deleteFindMax c
in insert m a $ foldr ( \ (x, y) -> insert x y) (delete a a r) $
zip (Set.toAscList d) (Set.toAscList b)
{--------------------------------------------------------------------
common transitive left element of two elements (Added by K.L.)
--------------------------------------------------------------------}
-- | calculates if two given elements have a common left element
--
-- * if one of the arguments is not present False is returned
haveCommonLeftElem :: (Ord a) => a -> a -> Rel a -> Bool
haveCommonLeftElem t1 t2 =
Map.fold(\ e rs -> rs || (t1 `Set.member` e &&
t2 `Set.member` e)) False . toMap
-- | partitions a set into a list of disjoint non-empty subsets
-- determined by the given function as equivalence classes
partSet :: (Ord a) => (a -> a -> Bool) -> Set.Set a -> [(Set.Set a)]
partSet f s = if Set.null s then [] else
let (x, s') = Set.deleteFindMin s
(ds, es) = List.partition (Set.null . Set.filter (f x))
$ partSet f s'
in Set.insert x (Set.unions es) : ds
-- | flattens a set of non empty sets and uses the minimal element of
-- each set to represent the set
flatSet :: (Ord a) => [Set.Set a] -> Set.Set a
flatSet = Set.fromList . List.map (\s -> if Set.null s
then error "Common.Lib.Rel.flatSet: never!"
else Set.findMin s)
-- | checks if a given relation is locally filtered
--
-- precondition: the relation must already be closed by transitive closure
locallyFiltered :: (Ord a) => Rel a -> Bool
locallyFiltered rel = (check . flatSet . partSet iso . mostRight) rel
where iso x y = member x y rel && member y x rel
check s
| Set.size s <= 1 = True
| otherwise =
Set.fold (\y rs -> rs &&
not (haveCommonLeftElem x y rel)) True s'
&& check s'
where (x,s') = Set.deleteFindMin s