Rel.hs revision 42df039edfe365519cb7b24dd847fef9be300dc8
{- |
Module : $Header$
Copyright : (c) Christian Maeder, Till Mossakowski and Uni Bremen 2003
Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : provisional
Portability : portable
supply a simple data type for (precedence or subsort) relations. A
relation is conceptually a set of (ordered) pairs,
but the hidden implementation is based on a map of sets.
An alternative view is that of a directed Graph
viewing (possibly isolated) nodes separately.
'Rel' is a directed graph with elements (Ord a) as (uniquely labelled) nodes
and (unlabelled) edges (with a multiplicity of at most one).
Usage: start with an 'empty' relation, 'insert' edges, and test for
an edge 'member' (before or after calling 'transClosure').
It is possible to insert self edges or bigger cycles.
Checking for a 'path' corresponds to checking for a member in the
transitive (possibly non-reflexive) closure. A further 'insert', however,
may destroy the closedness property of a relation.
Some parts are adapted from D. King, J. Launchbury 95:
Structuring depth-first search algorithms in Haskell.
-}
module Common.Lib.Rel (Rel(), empty, isEmpty, insert, member, toMap,
union , subset, difference, path,
transClosure, fromList, toList, image,
restrict, toSet, fromSet, topSort,
isolated, transpose, connComp, collaps) where
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import Data.List(groupBy)
data Rel a = Rel (Map.Map a (Set.Set a)) deriving Eq
-- | the empty relation
empty :: Rel a
empty = Rel Map.empty
-- | test for 'empty'
isEmpty :: Rel a -> Bool
isEmpty (Rel m) = Map.isEmpty m
-- | map without emoty successors
toMap :: Ord a => Rel a -> Map.Map a (Set.Set a)
toMap (Rel m) = Map.filter (not . Set.isEmpty) m
-- | difference of two relations
difference :: Ord a => Rel a -> Rel a -> Rel a
difference a b = Set.fold insertNode
(fromSet $ Set.difference (toSet a) $ toSet b)
$ Set.difference (isolated a) $ nodeSet b
-- | union of two relations
union :: Ord a => Rel a -> Rel a -> Rel a
union a b = Set.fold insertNode (fromSet $ Set.union (toSet a) $ toSet b)
$ Set.union (nodeSet a) $ nodeSet b
-- | is the first relation a subset of the second
subset :: Ord a => Rel a -> Rel a -> Bool
subset a b = Set.subset (nodeSet a) (nodeSet b) &&
Set.subset (toSet a) (toSet b)
-- | insert an ordered pair
insert :: Ord a => a -> a -> Rel a -> Rel a
insert a b (Rel m) = insertNode b $ Rel $ Map.setInsert a b m
-- | test for an (previously inserted) ordered pair
member :: Ord a => a -> a -> Rel a -> Bool
member a b r = Set.member b $ getDAdjs r a
-- | get direct successors
getDAdjs :: Ord a => Rel a -> a -> Set.Set a
getDAdjs (Rel m) a = Map.findWithDefault Set.empty a m
-- | test for 'member' or transitive membership (non-empty path)
path :: Ord a => a -> a -> Rel a -> Bool
path a b r = Set.member b $ reachable r a
-- | compute transitive closure (make all transitive members direct members)
transClosure :: Ord a => Rel a -> Rel a
transClosure r@(Rel m) = Rel $ Map.mapWithKey ( \ k _ -> reachable r k) m
data Tree a = Node a [Tree a] deriving Show
-- | get dfs tree rooted at node
dfsT :: Ord a => Rel a -> Set.Set a -> a -> (Set.Set a, Tree a)
dfsT r s v = let (t, ts) = dfsF r (Set.insert v s) $ Set.toList $ getDAdjs r v
in (t, Node v ts)
-- | get dfs forest for a list of nodes
dfsF :: Ord a => Rel a -> Set.Set a -> [a] -> (Set.Set a, [Tree a])
dfsF r s l = case l of
[] -> (s, [])
x : xs -> if Set.member x s then dfsF r s xs else
let (t, a) = dfsT r s x
(u, ts) = dfsF r t xs in (u, a : ts)
-- | get dfs forest of a relation
dfs :: Ord a => Rel a -> [a] -> [Tree a]
dfs r = snd . dfsF r Set.empty
-- | get dfs forest of a relation
dff :: Ord a => Rel a -> [Tree a]
dff r@(Rel m) = dfs r $ Map.keys m
-- | get reverse relation
transpose :: Ord a => Rel a -> Rel a
transpose r = let (ns, es) = toGraph r in
fromGraph (ns, map (\ (a, b) -> (b, a)) $ es)
flatT :: Ord a => Tree a -> Set.Set a
flatT (Node v ts) = Set.insert v $ flatF ts
flatF :: Ord a => [Tree a] -> Set.Set a
flatF = Set.unions . map flatT
postOrdT :: Tree a -> [a] -> [a]
postOrdT (Node v ts) = postOrdF ts . (v:)
postOrdF :: [Tree a] -> [a] -> [a]
postOrdF = foldr (.) id . map postOrdT
postOrd :: Ord a => Rel a -> [a]
postOrd r = postOrdF (dff r) []
scc :: Ord a => Rel a -> [Tree a]
scc r = dfs r $ reverse $ postOrd $ transpose r
reachable :: Ord a => Rel a -> a -> Set.Set a
reachable r = flatF . dfs r . Set.toList . getDAdjs r
{- | Connected components as a mapping from a minimal representative
to all other reachable nodes. Transposing the result allows
replacing nodes by a unique representatives. -}
connComp :: Ord a => Rel a -> Rel a
connComp r = Rel $ foldr (\ t m ->
let s = flatT t in
Map.insert (Set.findMin s) s m) Map.empty $ scc r
-- | collaps strongly connected components to its minimal representative
collaps :: Ord a => Rel a -> Rel a
collaps r@(Rel m) =
let Rel rs = transpose $ connComp r
f e = Map.findWithDefault e e $ Map.map Set.findMin rs
in Rel $ Map.map (Set.image f) $
Map.foldWithKey (Map.insertWith Set.union . f) Map.empty m
{-
-- | transitive reduction (minimal relation with the same transitive closure)
transReduce :: Ord a => Rel a -> Rel a
-}
-- | convert a list of ordered pairs to a relation
fromList :: Ord a => [(a, a)] -> Rel a
fromList = foldr (uncurry insert) empty
-- | convert a relation to a list of ordered pairs
toList :: Rel a -> [(a, a)]
toList (Rel m) = concatMap (\ (a , bs) -> map ( \ b -> (a, b) )
(Set.toList bs)) $ Map.toList m
-- | nodes of a graph (including isolated ones)
nodes :: Rel a -> [a]
nodes (Rel m) = Map.keys m
-- | all nodes of a graph as a set
nodeSet :: Rel a -> Set.Set a
nodeSet = Set.fromDistinctAscList . nodes
-- | nodes without successors
leaves :: Ord a => Rel a -> [a]
leaves (Rel m) = Map.keys $ Map.filter Set.isEmpty m
-- | isolated Nodes
isolated :: Ord a => Rel a -> Set.Set a
isolated r@(Rel m) = Set.difference
(Set.fromDistinctAscList $ leaves r) $ Set.unions $ Map.elems m
-- | the list of nodes and edges
toGraph :: Rel a -> ([a], [(a, a)])
toGraph r = (nodes r, toList r)
-- | insert a node without successors (no change if node is known)
insertNode :: Ord a => a -> Rel a -> Rel a
insertNode n r@(Rel m) =
if Map.member n m then r else Rel $ Map.insert n Set.empty m
-- | construct a graph from edges and add further isolated nodes
fromGraph :: Ord a => ([a], [(a, a)]) -> Rel a
fromGraph (ns, es) = foldr insertNode (fromList es) ns
instance (Show a, Ord a) => Show (Rel a) where
showsPrec _ r = let is = isolated r in
(shows $ Set.fromDistinctAscList $ toList r)
. if Set.isEmpty is then id else shows is
{--------------------------------------------------------------------
Image (Added by T.M.) (implementation changed by C.M.)
--------------------------------------------------------------------}
-- | Image of a relation under a function
image :: (Ord a, Ord b) => (a -> b) -> Rel a -> Rel b
image f r = let (ns, es) = toGraph r in
fromGraph (map f ns, map ( \ (a, b) -> (f a, f b)) es)
{--------------------------------------------------------------------
Restriction (Added by T.M.)(implementation changed by C.M.)
--------------------------------------------------------------------}
-- | Restriction of a relation under a set
restrict :: Ord a => Rel a -> Set.Set a -> Rel a
restrict r@(Rel m) s =
Rel $ Map.filterWithKey ( \ k v -> not (Set.isEmpty v)
|| Set.member k (isolated r))
$ Map.foldWithKey
(\a ra -> if a `Set.member` s
then Map.insert a $ Set.intersection ra s
else id) Map.empty m
{--------------------------------------------------------------------
Conversion from/to sets (Added by T.M.)(implementation changed by C.M.)
--------------------------------------------------------------------}
-- | convert a relation to a set of ordered pairs
toSet :: (Ord a) => Rel a -> Set.Set (a, a)
toSet = Set.fromDistinctAscList . toList
-- | convert a set of ordered pairs to a relation
fromSet :: (Ord a) => Set.Set (a, a) -> Rel a
fromSet s = close $ fromAscList $ Set.toList s where
-- | convert a sorted list of ordered pairs to a relation
fromAscList :: (Ord a) => [(a, a)] -> Rel a
fromAscList = Rel . Map.fromDistinctAscList
. map ( \ l -> (fst (head l),
Set.fromDistinctAscList $ map snd l))
. groupBy ( \ (a, _) (b, _) -> a == b)
close :: Ord a => Rel a -> Rel a
close r@(Rel m) = Set.fold insertNode r $ Set.unions $ Map.elems m
-- | topological sort a relation (more efficient for a closed relation)
topSort :: Ord a => Rel a -> [Set.Set a]
topSort r@(Rel m) =
if isEmpty r then []
else let es = Set.unions $ Map.elems m
ms = (Set.fromDistinctAscList $ Map.keys m) Set.\\ es in
if Set.isEmpty ms then let hasCyc = removeCycle r in
case hasCyc of
Nothing -> topSort (transClosure r)
Just (a, cyc, restRel) ->
map ( \ s -> if Set.member a s then
Set.union s cyc else s) $ topSort restRel
else let (lowM, rest) =
Map.partitionWithKey (\ k _ -> Set.member k ms) m
-- no not forget loose ends
bs = Set.unions $ Map.elems lowM
ls = bs Set.\\ Set.fromDistinctAscList (Map.keys rest) in
-- put them as low as possible
ms : (topSort $ Rel $ Set.fold ( \ i ->
Map.insert i Set.empty) rest ls)
-- | try to remove a cycle
removeCycle :: Ord a => Rel a -> Maybe (a, Set.Set a, Rel a)
removeCycle r@(Rel m) =
let cycles = Map.filterWithKey Set.member m in
if Map.isEmpty cycles then -- no cycle found
let cl = transClosure r in
if r == cl then Nothing -- no cycle there
else removeCycle cl
else let (a, os) = Map.findMin cycles
cs = Set.fold ( \ e s ->
if member e a r then
Set.insert e s else s) Set.empty
$ Set.delete a os
m1 = Map.map (Set.image ( \ e ->
if Set.member e cs then
a else e)) m
rs = Map.foldWithKey ( \ k v s ->
if Set.member k cs then
Set.union s $ Set.delete a v else s)
Set.empty m1
in Just (a, cs, Rel $ Map.insert a rs $ Set.fold Map.delete m1 cs)
{- The result is a representative "a", the cycle "cs", i.e. all other
elements that are represented by "a" and the remaining relation with
all elements from "cs" replaced by "a" and without the cycle "(a,a)"
-}