Graph.hs revision b2e92fd7a332d07a52e0284ea7a40618e0ff5656
{- |
Module : $Header$
Description : Tree-based implementation of 'Graph' and 'DynGraph' using Data.Map
Copyright : (c) Martin Erwig, Christian Maeder and Uni Bremen 1999-2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
Tree-based implementation of 'Graph' and 'DynGraph' using Data.IntMap
instead of Data.Graph.Inductive.Internal.FiniteMap
-}
module Common.Lib.Graph (Gr, convertToMap, unsafeConstructGr, getPaths) where
import Data.Graph.Inductive.Graph
import qualified Data.IntMap as Map
-- | the graph type constructor
newtype Gr a b = Gr { convertToMap :: Map.IntMap (Adj b, a, Adj b) }
unsafeConstructGr :: Map.IntMap (Adj b, a, Adj b) -> Gr a b
unsafeConstructGr = Gr
type GraphRep a b = Map.IntMap (Context' a b)
type Context' a b = (Adj b, a, Adj b)
instance (Show a,Show b) => Show (Gr a b) where
show (Gr g) = showGraph g
instance Graph Gr where
empty = Gr Map.empty
isEmpty (Gr g) = Map.null g
match = matchGr
mkGraph vs es = (insEdges es . insNodes vs) empty
labNodes (Gr g) = map (\(v,(_,l,_))->(v,l)) (Map.toList g)
-- more efficient versions of derived class members
--
matchAny (Gr g) = if Map.null g then error "Match Exception, Empty Graph"
else (c,g') where (Just c,g') = matchGr (head $ Map.keys g) (Gr g)
noNodes (Gr g) = Map.size g
nodeRange (Gr g) = if Map.null g then (0, -1)
labEdges (Gr g) =
concatMap (\(v,(_,_,s))->map (\(l,w)->(v,w,l)) s) (Map.toList g)
instance DynGraph Gr where
(p,v,l,s) & (Gr g) | Map.member v g =
error ("Node Exception, Node: "++show v)
| otherwise = Gr g3
where g1 = Map.insert v (p, l, s) g
g2 = updAdj g1 p (addSucc v)
g3 = updAdj g2 s (addPred v)
----------------------------------------------------------------------
-- UTILITIES
----------------------------------------------------------------------
showGraph :: (Show a, Show b) => GraphRep a b -> String
showGraph gr = unlines $ map (\ (v,(_,l',s)) ->
show v ++ ":" ++ show l' ++ " ->" ++ show s)
$ Map.toList gr
{- here cyclic edges are omitted as predecessors, thus they only count
as outgoing and not as ingoing! Therefore it is enough that only
successors are filtered during deletions. -}
matchGr :: Node -> Gr a b -> Decomp Gr a b
matchGr v (Gr g) =
case Map.lookup v g of
Nothing -> (Nothing, Gr g)
Just (p,l,s) -> (Just (p',v,l,s), Gr g2)
where s' = filter ((/=v).snd) s
p' = filter ((/=v).snd) p
g' = Map.delete v g
g1 = updAdj g' s' (clearPred v)
g2 = updAdj g1 p' (clearSucc v)
addSucc :: Node -> b -> Context' a b -> Context' a b
addSucc v l (p,l',s) = (p,l',(l,v):s)
addPred :: Node -> b -> Context' a b -> Context' a b
addPred v l (p,l',s) = ((l,v):p,l',s)
clearSucc :: Node -> b -> Context' a b -> Context' a b
clearSucc v _ (p,l,s) = (p,l,filter ((/=v).snd) s)
clearPred :: Node -> b -> Context' a b -> Context' a b
clearPred v _ (p,l,s) = (filter ((/=v).snd) p,l,s)
updAdj :: GraphRep a b -> Adj b -> (b -> Context' a b -> Context' a b)
-> GraphRep a b
updAdj g [] _ = g
updAdj g ((l,v):vs) f | Map.member v g = updAdj (Map.adjust (f l) v g) vs f
| otherwise = error ("Edge Exception, Node: "++show v)
{- | compute the possible cycle free paths from a start node.
The result paths are given as lists in reverse order! -}
getPaths :: [LEdge b] -> Node -> Gr a b -> [[LEdge b]]
getPaths path src dgraph =
let edgesOfType =
[ edge | edge@(_, tgt, _) <- out dgraph src
, tgt /= src ]
in [ edge : path | edge <- edgesOfType]
++ concat
[ getPaths (edge : path) tgt $ delNode src dgraph
| edge@(_, tgt, _) <- edgesOfType ]