Graph.hs revision 958f90c8f4cd3614beaadd2147c646183868516c
--
-- Graph.hs -- Inductive Graphs (c) 2000 by Martin Erwig
--
-- The implementation is based on extensible finite maps.
-- For fixed size graphs, see StaticGraph.hs
--
-- Example Graphs: GraphData.hs
--
module Common.Lib.Graph (
-- types
Node,LNode,UNode, -- plain, labeled, and unit-labeled node
Edge,LEdge,UEdge, -- plain, labeled, and unit-labeled edge
Graph,UGraph, -- plain and unit-labeled graph
Adj,Context,MContext,Decomp,GDecomp, -- inductive graph view
Path,LPath,UPath, -- plain, labeled, and unit-labeled path
-- main functions
empty,embed,(&),match,matchP,matchAny,
emptyU,embedU,matchU,matchAnyU,
-- derived operations
isEmpty,matchSome,matchThe,context,contextP,
delNode,delNodes,delEdge,delEdges,
suc,pre,neighbors,out,inn,indeg,outdeg,deg,
suc',pre',neighbors',out',inn',indeg',outdeg',deg',node',lab',labNode',
noNodes,nodeRange,nodes,labNodes,edges,labEdges,
-- graph folds
-- ufold,gfold, --> see Basic.hs
-- graph transformations
-- undir, gmap, --> see Basic.hs
-- utilities to for (un)labeling
labUEdges,labUNodes,labUAdj,
unlabEdges,unlabNodes,unlabAdj,
-- utilities to build graphs
newNodes,insNode,insNodes,insEdge,insEdges,
mkGraph,mkUGraph,buildGr
) where
import Common.Lib.SimpleMap
import Data.Maybe (fromJust)
----------------------------------------------------------------------
-- TYPES
----------------------------------------------------------------------
-- basic types
--
type Node = Int
type LNode a = (Node,a)
type UNode = LNode ()
type Edge = (Node,Node)
type LEdge b = (Node,Node,b)
type UEdge = LEdge ()
data Graph a b = Graph (GraphRep a b)
type UGraph = Graph () ()
-- type NGraph a = Graph a ()
-- type EGraph b = Graph () b
type Path = [Node]
type LPath a = [LNode a]
type UPath = [UNode]
-- types supporting inductive graph view
--
type Adj b = [(b,Node)]
type Context a b = (Adj b,Node,a,Adj b) -- Context a b "=" Context' a b "+" Node
type MContext a b = Maybe (Context a b)
type Decomp a b = (MContext a b,Graph a b)
type GDecomp a b = (Context a b,Graph a b)
type UContext = ([Node],Node,[Node])
type UDecomp = (Maybe UContext,UGraph)
-- local
--
type Context' a b = (Adj b,a,Adj b)
type GraphRep a b = FiniteMap Node (Context' a b)
----------------------------------------------------------------------
-- UTILITIES
----------------------------------------------------------------------
-- pretty printing
--
showsGraph :: (Show a,Show b) => GraphRep a b -> ShowS
showsGraph Empty = id
showsGraph (Node l (v,(_,lab,suc)) r) = showsGraph l . ('\n':) .
shows v . (':':) . shows lab . ("->"++) . shows suc . showsGraph r
instance (Show a,Show b) => Show (Graph a b) where
showsPrec _ (Graph g) = showsGraph g
-- other
--
addSucc v l (pre,lab,suc) = (pre,lab,(l,v):suc)
addPred v l (pre,lab,suc) = ((l,v):pre,lab,suc)
clearSucc v l (pre,lab,suc) = (pre,lab,filter ((/=v).snd) suc)
clearPred v l (pre,lab,suc) = (filter ((/=v).snd) pre,lab,suc)
updAdj :: GraphRep a b -> Adj b -> (b -> Context' a b -> Context' a b) -> GraphRep a b
updAdj g [] f = g
updAdj g ((l,v):vs) f | elemFM g v = updAdj (updFM g v (f l)) vs f
| otherwise = error ("Edge Exception, Node: "++show v)
-- pairL x ys = map ((,) x) ys
-- pairR x ys = map (flip (,) x) ys
fst4 (x,_,_,_) = x
snd4 (_,x,_,_) = x
thd4 (_,_,x,_) = x
fth4 (_,_,_,x) = x
-- some (un)labeling functions
--
labUEdges = map (\(v,w)->(v,w,()))
labUNodes = map (\v->(v,()))
labUAdj = map (\v->((),v))
unlabEdges = map (\(v,w,_)->(v,w))
unlabNodes = map fst
unlabAdj = map snd
----------------------------------------------------------------------
-- MAIN FUNCTIONS
----------------------------------------------------------------------
-- constructing graphs
--
empty :: Graph a b
empty = Graph emptyFM
isEmpty :: Graph a b -> Bool
isEmpty (Graph g) = case g of {Empty -> True; _ -> False}
embed :: Context a b -> Graph a b -> Graph a b
embed (pre,v,l,suc) (Graph g) | elemFM g v = error ("Node Exception, Node: "++show v)
| otherwise = Graph g3
where g1 = addToFM g v (pre,l,suc)
g2 = updAdj g1 pre (addSucc v)
g3 = updAdj g2 suc (addPred v)
infixr &
c & g = embed c g
-- decomposing graphs
--
match :: Node -> Graph a b -> Decomp a b
match v (Graph g) =
case splitFM g v of
Nothing -> (Nothing,Graph g)
Just (g,(_,(pre,lab,suc))) -> (Just (pre',v,lab,suc),Graph g2)
where suc' = filter ((/=v).snd) suc
pre' = filter ((/=v).snd) pre
g1 = updAdj g suc' (clearPred v)
g2 = updAdj g1 pre' (clearSucc v)
-- the same for unlabeled graphs
--
emptyU :: UGraph
emptyU = empty
embedU :: UContext -> UGraph -> UGraph
embedU (p,v,s) = embed (labUAdj p,v,(),labUAdj s)
matchU :: Node -> UGraph -> UDecomp
matchU v g = case match v g of
(Nothing,g') -> (Nothing,g')
(Just (p,v,_,s),g') -> (Just (unlabAdj p,v,unlabAdj s),g')
matchAnyU :: UGraph -> (UContext,UGraph)
matchAnyU g = ((unlabAdj p,v,unlabAdj s),g') where ((p,v,_,s),g') = matchAny g
{-
-- Note that with
membed :: Decomp a b -> Graph a b
membed (Nothing,g) = g
membed (Just c, g) = embed c g
-- and
gid :: Node -> Graph a b -> Graph a b
gid v = membed . match v
-- we have that gid is an identity on graphs for any node v.
-}
-- derived/specialized decompositions
--
-- match matches a specified node (regards loops as successors)
-- matchP matches a specified node (regards loops as predecessors)
-- matchAny matches an arbitrary node
-- matchSome matches any node with a specified property
-- matchThe matches a node if it is uniquely characterized by the given property
--
matchP :: Node -> Graph a b -> Decomp a b
matchP v (Graph g) =
case splitFM g v of
Nothing -> (Nothing,Graph g)
Just (g,(_,(pre,lab,suc))) -> (Just (pre,v,lab,suc'),Graph g2)
where suc' = filter ((/=v).snd) suc
pre' = filter ((/=v).snd) pre
g1 = updAdj g suc' (clearPred v)
g2 = updAdj g1 pre' (clearSucc v)
matchAny :: Graph a b -> GDecomp a b
matchAny (Graph Empty) = error "Match Exception, Empty Graph"
matchAny g@(Graph (Node _ (v,_) _)) = (c,g') where (Just c,g') = match v g
matchSome :: (Graph a b -> Node -> Bool) -> Graph a b -> GDecomp a b
matchSome _ (Graph Empty) = error "Match Exception, Empty Graph"
matchSome p g = case filter (p g) (nodes g) of
[] -> error "Match Exception, no such node found"
(v:vs) -> (c,g') where (Just c,g') = match v g
matchThe :: (Graph a b -> Node -> Bool) -> Graph a b -> GDecomp a b
matchThe _ (Graph Empty) = error "Match Exception, Empty Graph"
matchThe p g = case filter (p g) (nodes g) of
[] -> error "Match Exception, no such node found"
[v] -> (c,g') where (Just c,g') = match v g
_ -> error "Match Exception, more than one node found"
-- decompositions ignoring remaining graph
--
context :: Node -> Graph a b -> Context a b
context v (Graph g) =
case lookupFM g v of
Nothing -> error ("Match Exception, Node: "++show v)
Just (pre,lab,suc) -> (filter ((/=v).snd) pre,v,lab,suc)
contextP :: Node -> Graph a b -> Context a b
contextP v (Graph g) =
case lookupFM g v of
Nothing -> error ("Match Exception, Node: "++show v)
Just (pre,lab,suc) -> (pre,v,lab,filter ((/=v).snd) suc)
----------------------------------------------------------------------
-- TYPE CLASSES
----------------------------------------------------------------------
-- newtype XNode a = X (LNode a)
-- type LNodes a = [LNode a]
--
-- class Label a l b where
-- label :: a -> l -> b
-- unlabel :: l -> a
--
-- instance Lab Node (LNode b) b where
-- label v l = (v,l)
-- unlabel (v,_) = v
--
-- instance Lab [Node] LNodes where
-- label vs l = zip vs (repeat l)
-- unlabel = map fst
--
-- instance Lab Edge LEdge where
-- label (v,w) l = (v,w,l)
-- unlabel (v,w,_) = (v,w)
--
-- instance Lab Node LNode where
-- label v l = (v,l)
-- unlabel (v,_) = v
-- class Insert a b c where
-- ins :: c -> Graph a b -> Graph a b
--
-- instance Insert () b Node where ins g v = insNode g (v,())
-- instance Insert a b (LNode a) where ins = insNode
-- instance Insert a b [LNode a] where ins = insNodes
-- instance Insert a b (LEdge b) where ins = insEdge
-- instance Insert a b [LEdge b] where ins = insEdges
-- decompositions ignoring contexts
--
delNode :: Node -> Graph a b -> Graph a b
delNode v = delNodes [v]
delNodes :: [Node] -> Graph a b -> Graph a b
delNodes [] g = g
delNodes (v:vs) g = delNodes vs (snd (match v g))
delEdge :: Edge -> Graph a b -> Graph a b
delEdge (v,w) g = case match v g of
(Nothing,_) -> g
(Just (p,v,l,s),g) -> embed (p,v,l,filter ((/=w).snd) s) g
delLEdge :: Eq b => LEdge b -> Graph a b -> Graph a b
delLEdge (v,w,lab) g = case match v g of
(Nothing,_) -> g
(Just (p,v,l,s),g) -> embed (p,v,l,filter ((/=(lab,w))) s) g
delEdges :: [Edge] -> Graph a b -> Graph a b
delEdges es g = foldr delEdge g es
-- projecting on context elements
--
context1 v g = fst4 (contextP v g)
context2 v g = snd4 (context v g)
context3 v g = thd4 (context v g)
context4 v g = fth4 (context v g)
-- informations derived from specific contexts
--
suc :: Graph a b -> Node -> [Node]
suc g v = map snd (context4 v g)
pre :: Graph a b -> Node -> [Node]
pre g v = map snd (context1 v g)
neighbors :: Graph a b -> Node -> [Node]
neighbors g v = (\(p,_,_,s) -> map snd (p++s)) (context v g)
out :: Graph a b -> Node -> [LEdge b]
out g v = map (\(l,w)->(v,w,l)) (context4 v g)
inn :: Graph a b -> Node -> [LEdge b]
inn g v = map (\(l,w)->(w,v,l)) (context1 v g)
outdeg :: Graph a b -> Node -> Int
outdeg g v = length (context4 v g)
indeg :: Graph a b -> Node -> Int
indeg g v = length (context1 v g)
deg :: Graph a b -> Node -> Int
deg g v = (\(p,_,_,s) -> length p+length s) (context v g)
-- above operations for already given contexts
--
suc' :: Context a b -> [Node]
suc' (_,_,_,s) = map snd s
pre' :: Context a b -> [Node]
pre' (p,_,_,_) = map snd p
neighbors' :: Context a b -> [Node]
neighbors' (p,_,_,s) = map snd p++map snd s
out' :: Context a b -> [LEdge b]
out' (_,v,_,s) = map (\(l,w)->(v,w,l)) s
inn' :: Context a b -> [LEdge b]
inn' (p,v,_,_) = map (\(l,w)->(w,v,l)) p
outdeg' :: Context a b -> Int
outdeg' (_,_,_,s) = length s
indeg' :: Context a b -> Int
indeg' (p,_,_,_) = length p
deg' :: Context a b -> Int
deg' (p,_,_,s) = length p+length s
node' :: Context a b -> Node
node' (_,v,_,_) = v
lab' :: Context a b -> a
lab' (_,_,l,_) = l
labNode' :: Context a b -> LNode a
labNode' (_,v,l,_) = (v,l)
-- gobal projections/selections
--
noNodes :: Graph a b -> Int
noNodes (Graph g) = sizeFM g
nodeRange :: Graph a b -> (Node,Node)
nodeRange (Graph Empty) = (0,-1)
nodeRange (Graph g) = (ix (minFM g),ix (maxFM g)) where ix = fst.fromJust
nodes :: Graph a b -> [Node]
nodes (Graph g) = (map fst (fmToList g))
labNodes :: Graph a b -> [LNode a]
labNodes (Graph g) = map (\(v,(_,l,_))->(v,l)) (fmToList g)
edges :: Graph a b -> [Edge]
edges (Graph g) = concatMap (\(v,(_,_,s))->map (\(_,w)->(v,w)) s) (fmToList g)
labEdges :: Graph a b -> [LEdge b]
labEdges (Graph g) = concatMap (\(v,(_,_,s))->map (\(l,w)->(v,w,l)) s) (fmToList g)
-- some utilities to build graphs
--
newNodes :: Int -> Graph a b -> [Node]
newNodes i g = [n..n+i] where n = 1+foldr max 0 (nodes g)
insNode :: LNode a -> Graph a b -> Graph a b
insNode (v,l) = embed ([],v,l,[])
insNodes :: [LNode a] -> Graph a b -> Graph a b
insNodes vs g = foldr insNode g vs
insEdge :: LEdge b -> Graph a b -> Graph a b
insEdge (v,w,l) g = embed (pre,v,lab,(l,w):suc) g'
where (Just (pre,_,lab,suc),g') = match v g
insEdges :: [LEdge b] -> Graph a b -> Graph a b
insEdges es g = foldr insEdge g es
mkGraph :: [LNode a] -> [LEdge b] -> Graph a b
mkGraph vs es = (insEdges es . insNodes vs) empty
mkUGraph :: [Node] -> [Edge] -> UGraph
mkUGraph vs es = mkGraph (labUNodes vs) (labUEdges es)
buildGr :: [Context a b] -> Graph a b
buildGr = foldr embed empty