Earley.hs revision d645eac2b9bf2e1a458b25982051276232670f09
{- |
Module : $Header$
Description : generic mixfix analysis, using an Earley parser
Copyright : Christian Maeder and Uni Bremen 2003-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : experimental
Portability : portable
Generic mixfix analysis, using an Earley parser
The grammer has a single non-terminal for terms (the double
underscore). A rule of the grammer carries an identifier, a precedence
number, and the actual token list of the identifier to match against
the input token list..
The parser can be instantiated for any term type. A
function parameter determines how applications from identifiers and
arguments are constructed.
-}
module Common.Earley
( Rule
, Rules
, partitionRules
-- * special tokens for special ids
, varTok
, exprTok
, parenId
, exprId
, varId
, tupleId
, unitId
, protect
, listRules
, mixRule
, getTokenPlaceList
, getPlainPolyTokenList
, getPolyTokenList
-- * resolution chart
, Chart
, mixDiags
, solveDiags
, ToExpr
, rules
, addRules
, initChart
, nextChart
, getResolved
) where
import Common.Id
import Common.Result
import Common.GlobalAnnotations
import Common.AS_Annotation
import Common.Prec
import Common.Utils (nubOrd)
import qualified Data.Map as Map
import Data.List
import Control.Exception
-- | take the difference of the two input lists take (length l2 - length l1) l2
takeDiff :: [a] -> [b] -> [b]
takeDiff l1 l2 = zipWith const l2 $ dropPrefix l1 l2
-- | update token positions.
-- return remaining positions
setToksPos :: [Token] -> Range -> ([Token], Range)
setToksPos (h:ts) (Range (p:ps)) =
let (rt, rp) = setToksPos ts (Range ps)
in (h {tokPos = Range [p]} : rt, rp)
setToksPos ts ps = (ts, ps)
reverseRange :: Range -> Range
reverseRange = Range . reverse . rangeToList
-- | update positions in 'Id'.
-- return remaining positions
setPlainIdePos :: Id -> Range -> (Id, Range)
setPlainIdePos (Id ts cs _) ps =
if null cs then
let (newTs, restPs) = setToksPos ts ps
in (Id newTs cs nullRange, restPs)
else let (toks, pls) = splitMixToken ts
(front, ps2) = setToksPos toks ps
ps2PL = rangeToList ps2
(newCs, ps3, ps4) =
if isNullRange ps2 then error "setPlainIdePos2"
else foldl ( \ (prevCs, seps, restPs) a ->
let (c1, qs) = setPlainIdePos a restPs
qsPL = rangeToList qs
in if isNullRange qs then error "setPlainIdePos1"
else (c1: prevCs,
Range (head qsPL : rangeToList seps),
Range (tail qsPL)))
([], Range [head ps2PL], Range (tail ps2PL)) cs
(newPls, ps7) = setToksPos pls ps4
in (Id (front ++ newPls) (reverse newCs) (reverseRange ps3), ps7)
-- no special index type anymore (assuming not much more development)
-- the info Int denotes fast precedence
data Item a = Item
{ rule :: Id -- the rule to match
, info :: Int -- additional precedence info for 'rule'
, lWeight :: Id -- weights for lower precedence pre- and postfixes
, rWeight :: Id -- given by the 'Id's itself
, posList :: Range -- positions of Id tokens
, args :: [a] -- currently collected arguments
-- both in reverse order
, ambigArgs :: [[a]] -- field for ambiguities
, ambigs :: [[a]] -- field for ambiguities
, rest :: [Token] -- part of the rule after the "dot"
, index :: Int -- index into the Table/input string
}
-- | the non-terminal
termStr :: String
termStr = "(__)"
-- | builtin terminals
commaTok, termTok, oParenTok, cParenTok :: Token
commaTok = mkSimpleId "," -- for list elements
termTok = mkSimpleId termStr
oParenTok = mkSimpleId "("
cParenTok = mkSimpleId ")"
listTok :: Token
listTok = mkSimpleId "[]" -- impossible token
protectTok :: Token
protectTok = mkSimpleId "()" -- impossible token
-- | token for a fixed (or recursively resolved) operator expression
exprTok :: Token
exprTok = mkSimpleId "(op )"
-- | token for a fixed (or recursively resolved) argument expression
varTok :: Token
varTok = mkSimpleId "(var )"
-- | parenthesis around one place
parenId :: Id
parenId = mkId [oParenTok, placeTok, cParenTok]
-- | id for tuples with at least two arguments
tupleId :: Id
tupleId = mkId [oParenTok, placeTok, commaTok, placeTok, cParenTok]
-- | id for the emtpy tuple
unitId :: Id
unitId = mkId [oParenTok, cParenTok]
-- | see 'exprTok'
exprId :: Id
exprId = mkId [exprTok]
-- | see 'varTok'
varId :: Id
varId = mkId [varTok]
listId :: (Id, Id) -> Id
listId (f,c) = Id [listTok] [f,c] nullRange
isListId :: Id -> Bool
isListId (Id ts _ _) = not (null ts) && head ts == listTok
-- | interpret placeholders as literal places
protect :: Id -> Id
protect i = Id [protectTok] [i] nullRange
unProtect :: Id -> Maybe Id
unProtect (Id ts cs _) = case cs of
[i] -> case ts of
[tok] | tok == protectTok -> Just i
_ -> Nothing
_ -> Nothing
-- | get the token list for a mixfix rule
getPolyTokenList :: Id -> [Token]
getPolyTokenList = getGenPolyTokenList termStr
-- | get the plain token list for prefix applications
getPlainPolyTokenList :: Id -> [Token]
getPlainPolyTokenList = getGenPolyTokenList place
type Rule = (Id, Int, [Token])
mkItem :: Int -> Rule -> Item a
mkItem ind (ide, inf, toks) = Item
{ rule = ide
, info = inf
, lWeight = ide
, rWeight = ide
, posList = nullRange
, args = []
, ambigArgs = []
, ambigs = []
, rest = toks
, index = ind }
-- | extract tokens with the non-terminal for places
getTokenPlaceList :: Id -> [Token]
getTokenPlaceList = getTokenList termStr
-- | construct a rule for a mixfix
mixRule :: Int -> Id -> Rule
mixRule b i = (i, b, getTokenPlaceList i)
asListAppl :: ToExpr a -> Id -> [a] -> Range -> a
asListAppl toExpr i ra br =
if isListId i then
let Id _ [f, c] _ = i
mkList [] ps = toExpr c [] ps
mkList (hd:tl) ps = toExpr f [hd, mkList tl ps] ps
in mkList ra br
else if elem i [typeId, exprId, parenId, varId]
then case ra of
[arg] -> arg
_ -> error "asListAppl"
else toExpr i ra br
-- | construct the list rules
listRules :: Int -> GlobalAnnos -> [Rule]
listRules inf g =
let lists = list_lit $ literal_annos g
listRule co toks = (listId co, inf, toks)
in concatMap ( \ (bs, (n, c)) ->
let (b1, b2, cs) = getListBrackets bs
e = Id (b1 ++ b2) cs nullRange in
(if e == n then [] -- add b1 ++ b2 if its not yet included by n
else [listRule (c, n) $ getPlainTokenList e])
++ [listRule (c, n) (b1 ++ [termTok] ++ b2),
listRule (c, n) (b1 ++ [termTok, commaTok, termTok] ++ b2)]
) $ Map.toList lists
type Table a = Map.Map Int [Item a]
lookUp :: Table a -> Int -> [Item a]
lookUp ce k = Map.findWithDefault [] k ce
-- | recognize next token (possible introduce new tuple variable)
scanItem :: (a -> a -> a) -> (a, Token) -> Item a -> [Item a]
scanItem addType (trm, t)
p@Item{ rest = ts, args = pArgs, posList = pRange } = case ts of
[] -> []
hd : tt -> let
q = p { posList = case rangeToList $ tokPos t of
[] -> pRange
ps@(po : _) -> Range $ (if null tt then last ps else po)
: rangeToList pRange }
r = q { rest = tt } in
if hd == t || t == exprTok && hd == varTok then
if t == commaTok then
case tt of
sd : _ | sd == termTok ->
-- tuple or list elements separator
[ r, q { rest = termTok : ts } ]
_ -> [r]
else if elem t [exprTok, varTok, typeInstTok] then
[r { args = trm : pArgs }]
else if t == typeTok then
case (tt, pArgs) of
([], [arg]) -> [q { rest = [], args = [addType trm arg] }]
_ -> error "scanItem: typeTok"
else [r]
else []
scan :: (a -> a -> a) -> (a, Token) -> [Item a] -> [Item a]
scan f = concatMap . scanItem f
mkAmbigs :: ToExpr a -> Item a -> [a]
mkAmbigs toExpr p@Item{ args = l, ambigArgs = aArgs } =
map ( \ aas -> fst $
mkExpr toExpr
p { args = takeDiff aas l ++ aas
} ) aArgs
addArg :: GlobalAnnos -> ToExpr a -> Item a -> Item a -> Item a
addArg ga toExpr argItem@Item { ambigs = ams, posList = aRange }
p@Item{ args = pArgs, rule = op, posList = pRange, ambigs = pAmbs
, rest = pRest} =
let (arg, _) = mkExpr toExpr argItem
newAms = mkAmbigs toExpr argItem
q = case pRest of
_ : tl ->
p { rest = tl
, posList = case rangeToList aRange of
[] -> pRange
qs@(h : _) -> Range $ (if null tl then
last qs else h) : rangeToList pRange
, args = arg : pArgs
, ambigs = (if null newAms then ams else newAms : ams)
++ pAmbs }
_ -> error "addArg"
in if isLeftArg op pArgs then
q { lWeight = getNewWeight ALeft ga argItem op }
else if isRightArg op pArgs then
q { rWeight = getNewWeight ARight ga argItem op }
else q
-- | shortcut for a function that constructs an expression
type ToExpr a = Id -> [a] -> Range -> a
mkExpr :: ToExpr a -> Item a -> (a, Range)
mkExpr toExpr Item { rule = orig, posList = ps, args = iArgs } =
let rs = reverseRange ps
(ide, qs) = if isListId orig then (orig, rs) else
setPlainIdePos (maybe orig id $ unProtect orig) rs
in (asListAppl toExpr ide (reverse iArgs) qs, rs)
reduce :: GlobalAnnos -> Table a -> ToExpr a -> Item a -> [Item a]
reduce ga table toExpr itm =
map (addArg ga toExpr itm)
$ filter (checkPrecs ga itm)
$ lookUp table $ index itm
getWeight :: AssocEither -> Item a -> Id
getWeight side = case side of
ALeft -> lWeight
ARight -> rWeight
getNewWeight :: AssocEither -> GlobalAnnos -> Item a -> Id -> Id
getNewWeight side ga = nextWeight side ga . getWeight side
-- | check precedences of an argument and a top-level operator.
checkPrecs :: GlobalAnnos -> Item a -> Item a -> Bool
checkPrecs ga argItem@Item { rule = arg, info = argPrec }
Item { rule = op, info = opPrec, args = oArgs } =
checkPrec ga (op, opPrec) (arg, argPrec) oArgs $ flip getWeight argItem
reduceCompleted :: GlobalAnnos -> Table a -> ToExpr a -> [Item a] -> [Item a]
reduceCompleted ga table toExpr =
foldr mergeItems [] . map (reduce ga table toExpr) .
filter (null . rest)
recReduce :: GlobalAnnos -> Table a -> ToExpr a -> [Item a] -> [Item a]
recReduce ga table toExpr items =
let reduced = reduceCompleted ga table toExpr items
in if null reduced then items
else recReduce ga table toExpr reduced `mergeItems` items
complete :: ToExpr a -> GlobalAnnos -> Table a -> [Item a] -> [Item a]
complete toExpr ga table items =
let reducedItems = recReduce ga table toExpr $
reduceCompleted ga table toExpr items
in reducedItems ++ items
doPredict :: [Item a] -> ([Item a], [Item a])
doPredict = partition ( \ Item{ rest = ts } ->
not (null ts) && head ts == termTok)
ordItem :: Item a -> Item a -> Ordering
ordItem Item{ index = i1, rest = r1, rule = n1 }
Item{ index = i2, rest = r2, rule = n2 } =
compare (i1, r1, n1) (i2, r2, n2)
ambigItems :: Item a -> Item a -> Item a
ambigItems i1@Item{ ambigArgs = ams1, args = as1 }
Item{ ambigArgs = ams2, args = as2 } =
i1 { ambigArgs = case ams1 ++ ams2 of
[] -> [as1, as2]
ams -> ams }
mergeItems :: [Item a] -> [Item a] -> [Item a]
mergeItems [] i2 = i2
mergeItems i1 [] = i1
mergeItems (i1:r1) (i2:r2) =
case ordItem i1 i2 of
LT -> i1 : mergeItems r1 (i2:r2)
EQ -> ambigItems i1 i2 : mergeItems r1 r2
GT -> i2 : mergeItems (i1:r1) r2
-- | the whole state for mixfix resolution
data Chart a = Chart
{ prevTable :: Table a
, currIndex :: Int
, currItems :: ([Item a], [Item a])
, rules :: ([Rule], [Rule])
, addRules :: Token -> [Rule]
, solveDiags :: [Diagnosis] }
-- | make one scan, complete, and predict step.
-- The first function adds a type to the result.
-- The second function filters based on argument and operator info.
-- If filtering yields 'Nothing' further filtering by precedence is applied.
nextChart :: (a -> a -> a) -> ToExpr a -> GlobalAnnos
-> Chart a -> (a, Token) -> Chart a
nextChart addType toExpr ga st term@(_, tok) = let
table = prevTable st
idx = currIndex st
igz = idx > 0
(cItems, sItems) = currItems st
(cRules, sRules) = rules st
pItems = if null cItems && igz then sItems else
map (mkItem idx) (addRules st tok ++ sRules) ++ sItems
scannedItems = scan addType term pItems
nextTable = if null cItems && igz then table else
Map.insert idx (map (mkItem idx) cRules ++ cItems) table
completedItems = complete toExpr ga nextTable $ sortBy ordItem scannedItems
nextIdx = idx + 1
in if null pItems && igz then st else st
{ prevTable = nextTable
, currIndex = nextIdx
, currItems = doPredict completedItems
, solveDiags =
[ Diag Error ("unexpected mixfix token: " ++ tokStr tok) $ tokPos tok
| null scannedItems ] ++ solveDiags st }
-- | add intermediate diagnostic messages
mixDiags :: [Diagnosis] -> Chart a -> Chart a
mixDiags ds st = st { solveDiags = ds ++ solveDiags st }
type Rules = ([Rule], [Rule]) -- postfix and prefix rules
-- | presort rules
partitionRules :: [Rule] -> Rules
partitionRules = partition ( \ (_, _, t : _) -> t == termTok)
-- | create the initial chart
initChart :: (Token -> [Rule]) -> Rules -> Chart a
initChart adder ruleS = Chart
{ prevTable = Map.empty
, currIndex = 0
, currItems = ([], [])
, rules = ruleS
, addRules = adder
, solveDiags = [] }
-- | extract resolved result
getResolved :: (a -> ShowS) -> Range -> ToExpr a -> Chart a -> Result a
getResolved pp p toExpr st = let
(predicted, items') = currItems st
ds = solveDiags st
items = if null items' && null ds then predicted else items'
in case items of
[] -> assert (not $ null ds) $ Result ds Nothing
_ -> let
(finals, r1) = partition ((0 ==) . index) items
(result, r2) = partition (null . rest) finals
in case result of
[] -> let
expected = if null r2 then filter (not . null . rest) r1 else r2
withpos = filter (not . isNullRange . posList) expected
(q, errs) = if null withpos then (p, expected) else
(concatMapRange (reverseRange . posList) withpos, withpos)
in Result (Diag Error ("expected further mixfix token: "
++ show (take 5 $ nubOrd $ map (tokStr . head . rest) errs)) q : ds)
Nothing
[har] -> case ambigs har of
[] -> case mkAmbigs toExpr har of
[] -> Result ds $ Just $ fst $ mkExpr toExpr har
ambAs -> Result (showAmbigs pp p (take 5 ambAs) : ds) Nothing
ams -> Result (map (showAmbigs pp p) (take 5 ams) ++ ds) Nothing
_ -> Result (showAmbigs pp p (map (fst . mkExpr toExpr) result) : ds)
Nothing
showAmbigs :: (a -> ShowS) -> Range -> [a] -> Diagnosis
showAmbigs pp p as = Diag Error
("ambiguous mixfix term\n " ++ showSepList (showString "\n ") pp
(take 5 as) "") p