StatAna.hs revision e071fb22ea9923a2a4ff41184d80ca46b55ee932
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
{- |
Module : $Header$
Description : static analysis for CoCASL
Copyright : (c) Till Mossakowski, Uni Bremen 2004-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : hausmann@informatik.uni-bremen.de
Stability : provisional
Portability : portable
static analysis for CoCASL
-}
module CoCASL.StatAna where
import CoCASL.AS_CoCASL
import CoCASL.Print_AS()
import CoCASL.CoCASLSign
import CASL.Sign
import CASL.MixfixParser
import CASL.ShowMixfix
import CASL.StaticAna
import CASL.AS_Basic_CASL
import CASL.Overload
import CASL.Inject
import CASL.Fold
import Common.AS_Annotation
import Common.GlobalAnnotations
import qualified Data.Set as Set
import qualified Data.Map as Map
import qualified Common.Lib.Rel as Rel
import Common.Lib.State
import Common.Id
import Common.Result
import Common.DocUtils
import Data.Maybe (catMaybes)
import Data.List (partition)
type CSign = Sign C_FORMULA CoCASLSign
basicCoCASLAnalysis :: (BASIC_SPEC C_BASIC_ITEM C_SIG_ITEM C_FORMULA,
Sign C_FORMULA CoCASLSign, GlobalAnnos)
-> Result (BASIC_SPEC C_BASIC_ITEM C_SIG_ITEM C_FORMULA,
Sign C_FORMULA CoCASLSign,
[Named (FORMULA C_FORMULA)])
basicCoCASLAnalysis =
basicAnalysis minExpForm ana_C_BASIC_ITEM ana_C_SIG_ITEM ana_CMix
ana_CMix :: Mix C_BASIC_ITEM C_SIG_ITEM C_FORMULA CoCASLSign
ana_CMix = emptyMix
{ getBaseIds = ids_C_BASIC_ITEM
, getSigIds = ids_C_SIG_ITEM
, getExtIds = \ e -> mkIdSets (Map.keysSet $ constructors e) Set.empty
, putParen = mapC_FORMULA
, mixResolve = resolveC_FORMULA
, checkMix = noExtMixfixCo
, putInj = injC_FORMULA }
ids_C_BASIC_ITEM :: C_BASIC_ITEM -> IdSets
ids_C_BASIC_ITEM ci = case ci of
CoFree_datatype al _ ->
(Set.unions $ map (ids_CODATATYPE_DECL . item) al, Set.empty)
CoSort_gen al _ -> unite $ map (ids_SIG_ITEMS ids_C_SIG_ITEM . item) al
ids_C_SIG_ITEM :: C_SIG_ITEM -> IdSets
ids_C_SIG_ITEM (CoDatatype_items al _) =
(Set.unions $ map (ids_CODATATYPE_DECL . item) al, Set.empty)
ids_CODATATYPE_DECL :: CODATATYPE_DECL -> Set.Set Id
ids_CODATATYPE_DECL (CoDatatype_decl _ al _) =
Set.unions $ map (ids_COALTERNATIVE . item) al
ids_COALTERNATIVE :: COALTERNATIVE -> Set.Set Id
ids_COALTERNATIVE a = case a of
Co_construct _ mi cs _ -> Set.unions $
maybe Set.empty single mi : map ids_COCOMPONENTS cs
CoSubsorts _ _ -> Set.empty
ids_COCOMPONENTS :: COCOMPONENTS -> Set.Set Id
ids_COCOMPONENTS (CoSelect l _ _) = Set.unions $ map single l
data CoRecord a b c d = CoRecord
{ foldBoxOrDiamond :: C_FORMULA -> Bool -> d -> a -> Range -> c
, foldCoSort_gen_ax :: C_FORMULA -> [SORT] -> [OP_SYMB] -> Bool -> c
, foldTerm_mod :: MODALITY -> b -> d
, foldSimple_mod :: MODALITY -> SIMPLE_ID -> d
}
foldC_Formula :: Record C_FORMULA a b -> CoRecord a b c d -> C_FORMULA -> c
foldC_Formula r cr c = case c of
BoxOrDiamond b m f ps ->
foldBoxOrDiamond cr c b (foldModality r cr m) (foldFormula r f) ps
CoSort_gen_ax s o b -> foldCoSort_gen_ax cr c s o b
foldModality :: Record C_FORMULA a b -> CoRecord a b c d -> MODALITY -> d
foldModality r cr m = case m of
Term_mod t -> foldTerm_mod cr m $ foldTerm r t
Simple_mod i -> foldSimple_mod cr m i
mapCoRecord :: CoRecord (FORMULA C_FORMULA) (TERM C_FORMULA) C_FORMULA MODALITY
mapCoRecord = CoRecord
{ foldBoxOrDiamond = \ _ -> BoxOrDiamond
, foldCoSort_gen_ax = \ _ -> CoSort_gen_ax
, foldTerm_mod = \ _ -> Term_mod
, foldSimple_mod = \ _ -> Simple_mod
}
constCoRecord :: ([a] -> a) -> a -> CoRecord a a a a
constCoRecord join c = CoRecord
{ foldBoxOrDiamond = \ _ _ m f _ -> join [m, f]
, foldCoSort_gen_ax = \ _ _ _ _ -> c
, foldTerm_mod = \ _ t -> t
, foldSimple_mod = \ _ _ -> c
}
mapC_FORMULA :: C_FORMULA -> C_FORMULA
mapC_FORMULA = foldC_Formula (mkMixfixRecord mapC_FORMULA) mapCoRecord
injC_FORMULA :: C_FORMULA -> C_FORMULA
injC_FORMULA = foldC_Formula (injRecord injC_FORMULA) mapCoRecord
resolveMODALITY :: MixResolve MODALITY
resolveMODALITY ga ids m = case m of
Term_mod t ->
fmap Term_mod $ resolveMixTrm mapC_FORMULA resolveC_FORMULA ga ids t
_ -> return m
resolveC_FORMULA :: MixResolve C_FORMULA
resolveC_FORMULA ga ids cf = case cf of
BoxOrDiamond b m f ps -> do
nm <- resolveMODALITY ga ids m
nf <- resolveMixFrm mapC_FORMULA resolveC_FORMULA ga ids f
return $ BoxOrDiamond b nm nf ps
_ -> error "resolveC_FORMULA"
noExtMixfixCo :: C_FORMULA -> Bool
noExtMixfixCo =
foldC_Formula (noMixfixRecord noExtMixfixCo) (constCoRecord and True)
minExpForm :: Min C_FORMULA CoCASLSign
minExpForm s form =
let ops = formulaIds s
minMod md ps = case md of
Simple_mod i -> minMod (Term_mod (Mixfix_token i)) ps
Term_mod t -> let
r = do
t2 <- oneExpTerm minExpForm s t
let srt = term_sort t2
trm = Term_mod t2
if Set.member srt ops
then return trm
else Result [mkDiag Error
("unknown modality '"
++ showId srt "' for term") t ]
$ Just trm
in case t of
Mixfix_token tm ->
if Set.member (simpleIdToId tm) ops
then return $ Simple_mod tm
else case maybeResult r of
Nothing -> Result
[mkDiag Error "unknown modality" tm]
$ Just $ Simple_mod tm
_ -> r
_ -> r
in case form of
BoxOrDiamond b m f ps ->
do nm <- minMod m ps
f2 <- minExpFORMULA minExpForm s f
return $ BoxOrDiamond b nm f2 ps
phi -> return phi
ana_C_SIG_ITEM :: Ana C_SIG_ITEM C_BASIC_ITEM C_SIG_ITEM C_FORMULA CoCASLSign
ana_C_SIG_ITEM _ mi =
case mi of
CoDatatype_items al _ ->
do mapM_ (\ i -> case item i of
CoDatatype_decl s _ _ -> addSort i s) al
mapAnM (ana_CODATATYPE_DECL Loose) al
closeSubsortRel
return mi
isCoConsAlt :: COALTERNATIVE -> Bool
isCoConsAlt a = case a of
CoSubsorts _ _ -> False
_ -> True
getCoSubsorts :: COALTERNATIVE -> [SORT]
getCoSubsorts c = case c of
CoSubsorts cs _ -> cs
_ -> []
-- | return list of constructors
ana_CODATATYPE_DECL :: GenKind -> CODATATYPE_DECL -> State CSign [Component]
ana_CODATATYPE_DECL gk (CoDatatype_decl s al _) =
do ul <- mapM (ana_COALTERNATIVE s) al
let constr = catMaybes ul
cs = map fst constr
if null constr then return ()
else do addDiags $ checkUniqueness cs
let totalSels = Set.unions $ map snd constr
wrongConstr = filter ((totalSels /=) . snd) constr
addDiags $ map ( \ (c, _) -> mkDiag Error
("total selectors '" ++ showSepList (showString ",")
showDoc (Set.toList totalSels)
"'\n must appear in alternative") c) wrongConstr
case gk of
Free -> do
let (alts, subs) = partition isCoConsAlt $ map item al
sbs = concatMap getCoSubsorts subs
comps = map (getCoConsType s) alts
ttrips = map ( \ (a, vs, ses) -> (a, vs, catSels ses))
$ map (coselForms1 "X") $ comps
sels = concatMap ( \ (_, _, ses) -> ses) ttrips
addSentences $ catMaybes $ map comakeInjective
$ filter ( \ (_, _, ces) -> not $ null ces)
comps
addSentences $ makeDisjSubsorts s sbs
addSentences $ catMaybes $ concatMap
( \ c -> map (comakeDisjToSort c) sbs)
comps
addSentences $ comakeDisjoint comps
let ttrips' = [(a,vs,t,ses) | (Just(a,t),vs,ses) <- ttrips]
addSentences $ catMaybes $ concatMap
( \ ses ->
map (makeUndefForm ses) ttrips') sels
_ -> return ()
return cs
getCoConsType :: SORT -> COALTERNATIVE -> (Maybe Id, OpType, [COCOMPONENTS])
getCoConsType s c =
let (part, i, il) = case c of
CoSubsorts _ _ -> error "getCoConsType"
Co_construct k a l _ -> (k, a, l)
in (i, OpType part (concatMap
(map (opRes . snd) . getCoCompType s) il) s, il)
getCoCompType :: SORT -> COCOMPONENTS -> [(Id, OpType)]
getCoCompType s (CoSelect l (Op_type k args res _) _) =
map (\ i -> (i, OpType k (args++[s]) res)) l
coselForms :: (Maybe Id, OpType, [COCOMPONENTS]) -> [Named (FORMULA f)]
coselForms x =
case coselForms1 "X" x of
(Just (i,f),vs,cs) -> makeSelForms 1 (i,vs,f,cs)
_ -> []
coselForms1 :: String -> (Maybe Id, OpType, [COCOMPONENTS])
-> (Maybe (Id, TERM f), [VAR_DECL], [(Maybe Id, OpType)])
coselForms1 str (i, ty, il) =
let cs = concatMap (getCoCompType $ opRes ty) il
vs = genSelVars str 1 $ map snd cs
it = case i of
Nothing -> Nothing
Just i' -> Just (i',Application (Qual_op_name i'
(toOP_TYPE ty) nullRange)
(map toQualVar vs) nullRange)
in (it, vs, map ( \ (j, typ) -> (Just j, typ)) cs)
comakeDisjToSort :: (Maybe Id, OpType, [COCOMPONENTS]) -> SORT
-> Maybe (Named (FORMULA f))
comakeDisjToSort a s = do
let (i, v, _) = coselForms1 "X" a
p = posOfId s
(c,t) <- i
return $ makeNamed ("ga_disjoint_" ++ showId c "_sort_" ++ showId s "")
$ mkForall v (Negation (Membership t s p) p) p
comakeInjective :: (Maybe Id, OpType, [COCOMPONENTS])
-> Maybe (Named (FORMULA f))
comakeInjective a = do
let (i1, v1, _) = coselForms1 "X" a
(i2, v2, _) = coselForms1 "Y" a
(c,t1) <- i1
(_,t2) <- i2
let p = posOfId c
return $ makeNamed ("ga_injective_" ++ showId c "") $
mkForall (v1 ++ v2)
(Equivalence (Strong_equation t1 t2 p)
(let ces = zipWith ( \ w1 w2 -> Strong_equation
(toQualVar w1) (toQualVar w2) p) v1 v2
in if isSingle ces then head ces else Conjunction ces p)
p) p
comakeDisjoint :: [(Maybe Id, OpType, [COCOMPONENTS])] -> [Named (FORMULA f)]
comakeDisjoint [] = []
comakeDisjoint (a:as) = catMaybes (map (comakeDisj a) as) ++ comakeDisjoint as
comakeDisj :: (Maybe Id, OpType, [COCOMPONENTS])
-> (Maybe Id, OpType, [COCOMPONENTS])
-> Maybe (Named (FORMULA f))
comakeDisj a1 a2 = do
let (i1, v1, _) = coselForms1 "X" a1
(i2, v2, _) = coselForms1 "Y" a2
(c1,t1) <- i1
(c2,t2) <- i2
let p = posOfId c1 `appRange` posOfId c2
return $ makeNamed ("ga_disjoint_" ++ showId c1 "_" ++ showId c2 "")
$ mkForall (v1 ++ v2) (Negation (Strong_equation t1 t2 p) p) p
-- | return the constructor and the set of total selectors
ana_COALTERNATIVE :: SORT -> Annoted COALTERNATIVE
-> State CSign (Maybe (Component, Set.Set Component))
ana_COALTERNATIVE s c =
case item c of
CoSubsorts ss _ -> do
mapM_ (addSubsort s) ss
return Nothing
ci -> do
let cons@(i, ty, il) = getCoConsType s ci
ul <- mapM (ana_COCOMPONENTS s) il
let ts = concatMap fst ul
addDiags $ checkUniqueness (ts ++ concatMap snd ul)
addSentences $ coselForms cons
case i of
Nothing -> return Nothing
Just i' -> do
addOp c ty i'
return $ Just (Component i' ty, Set.fromList ts)
-- | return total and partial selectors
ana_COCOMPONENTS :: SORT -> COCOMPONENTS
-> State CSign ([Component], [Component])
ana_COCOMPONENTS s c = do
let cs = getCoCompType s c
sels <- mapM ( \ (i, ty) ->
do addOp (emptyAnno ()) ty i
return $ Just $ Component i ty) cs
return $ partition ((==Total) . opKind . compType) $ catMaybes sels
ana_C_BASIC_ITEM
:: Ana C_BASIC_ITEM C_BASIC_ITEM C_SIG_ITEM C_FORMULA CoCASLSign
ana_C_BASIC_ITEM mix bi = do
case bi of
CoFree_datatype al ps ->
do mapM_ (\ i -> case item i of
CoDatatype_decl s _ _ -> addSort i s) al
mapAnM (ana_CODATATYPE_DECL Free) al
toCoSortGenAx ps True $ getCoDataGenSig al
closeSubsortRel
return bi
CoSort_gen al ps ->
do (gs,ul) <- ana_CoGenerated ana_C_SIG_ITEM mix ([], al)
toCoSortGenAx ps False $ unionGenAx gs
return $ CoSort_gen ul ps
toCoSortGenAx :: Range -> Bool -> GenAx -> State CSign ()
toCoSortGenAx ps isFree (sorts, rel, ops) = do
let sortList = Set.toList sorts
opSyms = map ( \ c -> let ide = compId c in Qual_op_name ide
(toOP_TYPE $ compType c) $ posOfId ide) $ Set.toList ops
injSyms = map ( \ (s, t) -> let p = posOfId s in
Qual_op_name injName
(Op_type Total [s] t p) p) $ Rel.toList rel
if null sortList then
addDiags[Diag Error "missing cogenerated sort" ps]
else return ()
addSentences [makeNamed ("ga_cogenerated_" ++ showSepList (showString "_")
showId sortList "")
$ ExtFORMULA $ CoSort_gen_ax sortList
(opSyms ++ injSyms) isFree]
ana_CoGenerated :: Ana C_SIG_ITEM C_BASIC_ITEM C_SIG_ITEM C_FORMULA CoCASLSign
-> Ana ([GenAx], [Annoted (SIG_ITEMS C_SIG_ITEM C_FORMULA)])
C_BASIC_ITEM C_SIG_ITEM C_FORMULA CoCASLSign
ana_CoGenerated anaf mix (_, al) = do
ul <- mapAnM (ana_SIG_ITEMS minExpForm anaf mix Generated) al
return (map (getCoGenSig . item) ul, ul)
getCoGenSig :: SIG_ITEMS C_SIG_ITEM C_FORMULA -> GenAx
getCoGenSig si = case si of
Sort_items al _ -> unionGenAx $ map (getGenSorts . item) al
Set.unions (map (getOps . item) al))
Datatype_items dl _ -> getDataGenSig dl
Ext_SIG_ITEMS (CoDatatype_items dl _) -> getCoDataGenSig dl
_ -> emptyGenAx
getCoDataGenSig :: [Annoted CODATATYPE_DECL] -> GenAx
getCoDataGenSig dl =
let get_sel (s, a) = case a of
CoSubsorts _ _ -> []
Co_construct _ _ l _ -> concatMap (getCoCompType s) l
alts = concatMap (( \ (CoDatatype_decl s al _) ->
map ( \ a -> (s, item a)) al) . item) dl
sorts = map fst alts
(realAlts, subs) = partition (isCoConsAlt . snd) alts
sels = map ( \ (i, ot) -> Component i ot) $ concatMap get_sel realAlts
rel = foldr ( \ (t, a) r ->
foldr ( \ s ->
Rel.insert s t)
r $ getCoSubsorts a)
Rel.empty subs
in (Set.fromList sorts, rel, Set.fromList sels)