TreePO.hs revision e9458b1a7a19a63aa4c179f9ab20f4d50681c168
{-# LANGUAGE TypeSynonymInstances, FlexibleInstances, DeriveDataTypeable #-}
{- |
Module : ./CSL/TreePO.hs
Description : Handling of tree-like partial ordering relations
Copyright : (c) Ewaryst Schulz, DFKI Bremen 2010
License : GPLv2 or higher, see LICENSE.txt
Maintainer : ewaryst.schulz@dfki.de
Stability : experimental
Portability : portable
This module defines a basic datatype for tree-like partial orderings such as
encountered, e.g., in the set lattice.
-}
module CSL.TreePO
{- ( Incomparable (..)
, SetOrdering (..)
, SetOrInterval (..)
, swapCompare
, swapCmp
, combineCmp
) -}
where
import Data.Data
import qualified Data.Set as Set
{- ----------------------------------------------------------------------
Datatypes for comparison
---------------------------------------------------------------------- -}
data Incomparable = Disjoint | Overlap deriving (Eq, Show, Typeable, Data)
data SetOrdering = Comparable Ordering | Incomparable Incomparable
deriving (Eq, Typeable, Data)
instance Show SetOrdering where
show (Comparable LT) = "<"
show (Comparable GT) = ">"
show (Comparable EQ) = "="
show (Incomparable x) = show x
{- | We represent Intervals with opened or closed end points over a linearly
ordered type 'a' as closed intervals over the type '(a, InfDev)', for
infinitesimal deviation.
- '(x, EpsLeft)' means an epsilon to the left of x
- '(x, Zero)' means x
- '(x, EpsRight)' means an epsilon to the right of x
We have EpsLeft < Zero < EpsRight and the ordering of 'a' lifts to the
lexicographical ordering of '(a, InfDev)' which captures well our intended
meaning.
We inject the type 'a' into the type '(a, InfDev)'
by mapping 'x' to '(x, Zero)'.
The mapping of intrvals is as follows:
A left opened interval starting at x becomes a left closed interval starting
at '(x, EpsRight)'.
We have:
'forall y > x. (y, _) > (x, EpsRight)', hence in particular
'(y, Zero) > (x, EpsRight)'
but also
'(x, Zero) < (x, EpsRight)'
Analogously we represent a right opened one ending at y as a closed one
ending at '(x, EpsLeft)'.
-}
data InfDev = EpsLeft | Zero | EpsRight deriving (Eq, Show, Typeable, Data)
instance Ord InfDev where
compare x y
| x == y = EQ
| otherwise =
case (x, y) of
(EpsLeft, _) -> LT
(EpsRight, _) -> GT
_ -> swapCompare $ compare y x
newtype CIType a = CIType (a, InfDev) deriving (Eq, Show, Typeable, Data)
{- | This type with the given ordering is to represent opened/closed intervals
over 'a' as closed intervals over '(a, InfDev)' -}
instance Ord a => Ord (CIType a) where
compare (CIType (x, a)) (CIType (y, b)) =
case compare x y of
EQ -> compare a b
res -> res
-- | A finite set or an interval. True = closed, False = opened interval border.
data SetOrInterval a = Set (Set.Set a)
| IntVal (a, Bool) (a, Bool)
deriving (Eq, Ord, Show, Typeable, Data)
-- | A closed interval
data ClosedInterval a = ClosedInterval a a
deriving (Eq, Ord, Show, Typeable, Data)
-- | Infinite integers = integers augmented by -Infty and +Infty
data InfInt = PosInf | NegInf | FinInt Integer
deriving (Show, Eq, Typeable, Data)
instance Ord InfInt where
compare x y
| x == y = EQ
| otherwise =
case (x, y) of
(NegInf, _) -> LT
(PosInf, _) -> GT
(FinInt a, FinInt b) -> compare a b
_ -> swapCompare $ compare y x
class Continuous a
class Discrete a where
nextA :: a -> a
prevA :: a -> a
intsizeA :: a -> a -> Maybe Integer
instance Discrete InfInt where
nextA (FinInt a) = FinInt $ a + 1
nextA x = x
prevA (FinInt a) = FinInt $ a - 1
prevA x = x
intsizeA (FinInt a) (FinInt b) = Just $ (1 +) $ abs $ b - a
intsizeA _ _ = Nothing
{- ----------------------------------------------------------------------
Comparison facility for sets
---------------------------------------------------------------------- -}
{- | Compares closed intervals [l1, r1] and [l2, r2]. Assumes
non-singular intervals, i.e., l1 < r1 and l2 < r2.
Works only for linearly ordered types. -}
cmpClosedInts :: Ord a => ClosedInterval a -- ^ [l1, r1]
-> ClosedInterval a -- ^ [l2, r2]
-> SetOrdering
cmpClosedInts (ClosedInterval l1 r1) (ClosedInterval l2 r2)
| l1 == l2 && r1 == r2 = Comparable EQ
| l1 <= l2 && r1 >= r2 = Comparable GT
| l1 >= l2 && r1 <= r2 = Comparable LT
| r1 < l2 || r2 < l1 = Incomparable Disjoint
| otherwise = Incomparable Overlap
{- ----------------------------------------------------------------------
Comparison for discrete types
---------------------------------------------------------------------- -}
-- | Membership in 'SetOrInterval'
membSoID :: (Discrete a, Ord a) => a -> SetOrInterval a -> Bool
membSoID x (Set s) = Set.member x s
membSoID x i = let ClosedInterval a b = setToClosedIntD i in x >= a && x <= b
-- | Checks if the set is empty.
nullSoID :: (Discrete a, Ord a) => SetOrInterval a -> Bool
nullSoID (Set s) = Set.null s
nullSoID i = let ClosedInterval a b = setToClosedIntD i in a > b
{- | If the set is singular, i.e., consists only from one point, then we
return this point. Reports error on empty SoI's. -}
toSingularD :: (Discrete a, Ord a) => SetOrInterval a -> Maybe a
toSingularD d
| nullSoID d = error "toSingularD: empty set"
| otherwise =
case d of
Set s
| Set.size s == 1 -> Just $ Set.findMin s
| otherwise -> Nothing
_ -> let ClosedInterval a b = setToClosedIntD d
in if a == b then Just a else Nothing
-- | Transforms a 'SetOrInterval' to a closed representation
setToClosedIntD :: (Discrete a, Ord a) => SetOrInterval a -> ClosedInterval a
setToClosedIntD (Set s) = ClosedInterval (Set.findMin s) $ Set.findMax s
setToClosedIntD (IntVal (l, bL) (r, bR)) =
ClosedInterval (if bL then l else nextA l) $ if bR then r else prevA r
-- | Compare sets over discrete types
cmpSoIsD :: (Discrete a, Ord a) =>
SetOrInterval a -> SetOrInterval a -> SetOrdering
cmpSoIsD d1 d2 =
case (toSingularD d1, toSingularD d2) of
(Just x1, Just x2)
| x1 == x2 -> Comparable EQ
| otherwise -> Incomparable Disjoint
(Just x, _)
| membSoID x d2 -> Comparable LT
| otherwise -> Incomparable Disjoint
(_, Just x)
| membSoID x d1 -> Comparable GT
| otherwise -> Incomparable Disjoint
_ -> cmpSoIsExD d1 d2 -- singular cases are dispelled here
{- | Compare sets helper function which only works on regular (non-singular)
sets -}
cmpSoIsExD :: (Discrete a, Ord a) =>
SetOrInterval a -> SetOrInterval a -> SetOrdering
cmpSoIsExD i1@(IntVal _ _) i2@(IntVal _ _) =
cmpClosedInts (setToClosedIntD i1) $ setToClosedIntD i2
cmpSoIsExD s1@(Set _) s2@(Set _) = cmpSoIsEx s1 s2
cmpSoIsExD i1@(IntVal _ _) s2@(Set s) =
let ci2@(ClosedInterval a2 b2) = setToClosedIntD s2
in case cmpClosedInts (setToClosedIntD i1) ci2 of
Comparable EQ -> case intsizeA a2 b2 of
Just dst
| fromIntegral (Set.size s) == dst ->
Comparable EQ
| otherwise -> Comparable GT
-- Nothing means infinite. This is a misuse!
_ -> error "cmpSoIsExD: unbounded finite set!"
Comparable LT -> Incomparable $ if any (`membSoID` i1) $ Set.toList s
then Overlap
else Disjoint
so -> so
cmpSoIsExD s1 i2 = swapCmp $ cmpSoIsExD i2 s1
{- ----------------------------------------------------------------------
Comparison for continuous types
---------------------------------------------------------------------- -}
-- | Membership in 'SetOrInterval'
membSoI :: Ord a => a -> SetOrInterval a -> Bool
membSoI x (Set s) = Set.member x s
membSoI x i = let ClosedInterval a b = setToClosedInt i
x' = CIType (x, Zero) in x' >= a && x' <= b
{- | Checks if the set is empty.
Only for continuous types. -}
nullSoI :: (Continuous a, Ord a) => SetOrInterval a -> Bool
nullSoI (Set s) = Set.null s
nullSoI (IntVal (a, bA) (b, bB)) = a == b && not (bA && bB)
{- | If the set is singular, i.e., consists only from one point, then we
return this point. Reports error on empty SoI's.
Only for continuous types. -}
toSingular :: (Continuous a, Ord a) => SetOrInterval a -> Maybe a
toSingular d
| nullSoI d = error "toSingular: empty set"
| otherwise =
case d of
Set s
| Set.size s == 1 -> Just $ Set.findMin s
| otherwise -> Nothing
IntVal (a, _) (b, _)
| a == b -> Just a
| otherwise -> Nothing
{- | Transforms a 'SetOrInterval' to a closed representation
Only for continuous types. -}
setToClosedInt :: Ord a =>
SetOrInterval a -> ClosedInterval (CIType a)
setToClosedInt (Set s) = ClosedInterval (CIType (Set.findMin s, Zero))
$ CIType (Set.findMax s, Zero)
setToClosedInt (IntVal (l, bL) (r, bR)) =
ClosedInterval (CIType (l, if bL then Zero else EpsRight))
$ CIType (r, if bR then Zero else EpsLeft)
-- | Compare sets over continuous types
cmpSoIs :: (Continuous a, Ord a) =>
SetOrInterval a -> SetOrInterval a -> SetOrdering
cmpSoIs d1 d2 =
case (toSingular d1, toSingular d2) of
(Just x1, Just x2)
| x1 == x2 -> Comparable EQ
| otherwise -> Incomparable Disjoint
(Just x, _)
| membSoI x d2 -> Comparable LT
| otherwise -> Incomparable Disjoint
(_, Just x)
| membSoI x d1 -> Comparable GT
| otherwise -> Incomparable Disjoint
_ -> cmpSoIsEx d1 d2 -- singular cases are dispelled here
{- | Compare sets helper function which only works on regular (non-singular)
sets -}
cmpSoIsEx :: (Ord a) => SetOrInterval a -> SetOrInterval a -> SetOrdering
cmpSoIsEx (Set s1) (Set s2)
| s1 == s2 = Comparable EQ
| s1 `Set.isSubsetOf` s2 = Comparable LT
| s2 `Set.isSubsetOf` s1 = Comparable GT
| Set.null $ Set.intersection s1 s2 = Incomparable Disjoint
| otherwise = Incomparable Overlap
cmpSoIsEx i1@(IntVal _ _) i2@(IntVal _ _) =
cmpClosedInts (setToClosedInt i1) $ setToClosedInt i2
cmpSoIsEx i1@(IntVal _ _) s2@(Set s) =
case cmpClosedInts (setToClosedInt i1) $ setToClosedInt s2 of
Comparable EQ -> Comparable GT
Comparable LT -> Incomparable $ if any (`membSoI` i1) $ Set.toList s
then Overlap
else Disjoint
so -> so
cmpSoIsEx s1 i2 = swapCmp $ cmpSoIsEx i2 s1
{- ----------------------------------------------------------------------
Combining comparison results
---------------------------------------------------------------------- -}
swapCompare :: Ordering -> Ordering
swapCompare GT = LT
swapCompare LT = GT
swapCompare x = x
swapCmp :: SetOrdering -> SetOrdering
swapCmp (Comparable x) = Comparable $ swapCompare x
swapCmp x = x
{- | We combine the comparison outcome of the individual parameters with
the following (symmetrical => commutative) table:
> \ | > < = O D
> -------------
> > | > O > O D
> < | < < O D
> = | = O D
> O | O D
> D | D
>
> , where
>
> > | < | = | O | D
> ---------------------------------------------
> RightOf | LeftOf | Equal | Overlap | Disjoint
The purpose of this table is to use it for cartesian products as follows
Let
A', A'' \subset A
B', B'' \subset B
In order to get the comparison result for A' x B' and A'' x B'' we compare
A' and A'' as well as B' and B'' and combine the results with the above table.
Note that for empty sets the comparable results <,>,= are preferred over the
disjoint result.
-}
combineCmp :: SetOrdering -> SetOrdering -> SetOrdering
combineCmp x y
| x == y = x -- idempotence
| otherwise =
case (x, y) of
(_, Incomparable Disjoint) -> Incomparable Disjoint
(Incomparable Overlap, _) -> Incomparable Overlap
(Comparable EQ, _) -> y -- neutral element
(Comparable GT, Comparable LT) -> Incomparable Overlap
_ -> combineCmp y x -- commutative (should capture all cases)