DependencyGraph.hs revision 7af4df794a0e0f0cb927bd9371556ad098308983
{- |
Module : $Header$
Description : Definition of Dependency Graph with utils
Copyright : (c) Ewaryst Schulz, DFKI Bremen 2011
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Ewaryst.Schulz@dfki.de
Stability : experimental
Portability : portable
Definition of Dependency Graph and utils to be applied to dependency stores
-}
module CSL.DependencyGraph
where
import Common.Doc
import Common.DocUtils
import CSL.AS_BASIC_CSL
import CSL.Sign as Sign
import qualified Data.Set as Set
import qualified Data.Map as Map
import Data.Maybe
-- * Dependency Graph datatype for various algorithms on Dependency Graphs
data DepGraph a b c = DepGraph
{ dataMap :: Map.Map a
( b -- the annotation
, Set.Set a -- the direct successors (smaller elements)
, Set.Set c -- the direct predecessors (bigger elements)
)
-- function returning for a given element and value the predecessors
-- of this element
, getPredecessors :: a -> b -> [c]
-- function returning for a given element and value the predecessors
-- of this element
, getKey :: c -> a
}
instance (Show a, Show b, Show c) => Show (DepGraph a b c) where
show = show . dataMap
depGraphLookup :: Ord a =>
DepGraph a b c -> a -> Maybe (b, Set.Set a, Set.Set c)
depGraphLookup gr x = Map.lookup x $ dataMap gr
prettyDepGraph :: (a -> Doc) -> (b -> Doc) -> (c -> Doc) -> DepGraph a b c
-> Doc
prettyDepGraph pa pb pc gr =
ppMap pa pf ((text "DepGraph" <+>) . braces) vcat f $ dataMap gr where
f a b = a <> text ":" <+> b
pf (v, dss, dps) =
ps pa dss <+> text " << x << " <+> ps pc dps <> text ":" <+> pb v
ps g = braces . (sepByCommas . map g) . Set.toList
instance (Pretty a, Pretty b, Pretty c) => Pretty (DepGraph a b c) where
pretty = prettyDepGraph pretty pretty pretty
emptyDepGraph :: (a -> b -> [c]) -> (c -> a) -> DepGraph a b c
emptyDepGraph f pf = DepGraph { dataMap = Map.empty, getPredecessors = f
, getKey = pf }
-- TODO: merge the type Rel2 and DepGraph in order to work only on the
-- new type, and implement a construction of this graph from a list
-- without the necessity to order the elements first.
-- | It is important to have the elements given in an order with
-- biggest elements first (elements which depend on nothing)
depGraphFromDescList :: (Ord a, Ord c) => (a -> b -> [c]) -> (c -> a) -> [(a,b)]
-> DepGraph a b c
depGraphFromDescList f pf = foldl g (emptyDepGraph f pf) where
g x (y, z) = updateGraph x y z
maybeSetUnions :: Ord a => Set.Set (Maybe (Set.Set a)) -> Set.Set a
maybeSetUnions s = Set.fold f Set.empty s where
f mS s' = maybe s' (Set.union s') mS
upperLevel :: (Ord a, Ord c) => DepGraph a b c -> Set.Set a -> Set.Set c
upperLevel gr = maybeSetUnions . Set.map f where
f a = fmap g $ Map.lookup a $ dataMap gr
g (_, _, dps) = dps
lowerLevel :: Ord a => DepGraph a b c -> [a] -> Set.Set a
lowerLevel gr = Set.unions . mapMaybe f where
f a = fmap g $ Map.lookup a $ dataMap gr
g (_, dss, _) = dss
setFilterLookup :: (Ord a, Ord b, Ord d, Show a) =>
(d -> a) -- ^ projection function
-> (a -> b -> Bool) -- ^ filter predicate
-> DepGraph a b c -- ^ dependency graph for lookup
-> Set.Set d -- ^ filter this set
-> Set.Set (d,b)
setFilterLookup pf fp gr s = Set.map h $ Set.filter g $ Set.map f s where
f x = (x, fmap ( \ (v, _, _) -> v ) $ Map.lookup (pf x) $ dataMap gr)
g (x, Just val) = fp (pf x) val
g _ = False
h (x, Just val) = (x, val)
h _ = error "setFilterLookup: Impossible case"
lowerUntil :: (Pretty a, Ord a, Ord b, Show a) =>
(a -> b -> Bool) -- ^ cut-off predicate
-> DepGraph a b c -- ^ dependency graph to be traversed
-> [a] -- ^ compare entries to this element
-> Set.Set (a,b)
lowerUntil _ _ [] = Set.empty
lowerUntil cop gr al =
let s = lowerLevel gr al
cop' x = not . cop x
s' = setFilterLookup id cop' gr s
s'' = lowerUntil cop gr $ map fst $ Set.toList s'
in Set.union s' s''
upperUntil :: (Ord a, Ord b, Ord c, Show a) =>
(a -> b -> Bool) -- ^ cut-off predicate
-> DepGraph a b c -- ^ dependency graph to be traversed
-> Set.Set a -- ^ compare entries to these elements
-> Set.Set (c,b)
upperUntil cop gr es
| Set.null es = Set.empty
| otherwise =
let s = upperLevel gr es
cop' x = not . cop x
s' = setFilterLookup (getKey gr) cop' gr s
s'' = upperUntil cop gr $ Set.map (getKey gr . fst) s'
in Set.union s' s''
-- | Reflexive version of 'upperUntil'
upperUntilRefl :: (Ord a, Ord b, Show a) =>
(a -> b -> Bool) -- ^ cut-off predicate
-> DepGraph a b a -- ^ dependency graph to be traversed
-> Set.Set a -- ^ compare entries to these elements
-> Set.Set (a,b)
upperUntilRefl cop gr es
| Set.null es = Set.empty
| otherwise =
Set.union (setFilterLookup (getKey gr) (const $ const True) gr es)
$ upperUntil cop gr es
-- | Updates the depgraph at the given key with the update function.
-- The dependencies are NOT recomputed. No new elements are added to the graph.
updateValue :: Ord a => DepGraph a b c -> (b -> b) -> a -> DepGraph a b c
updateValue gr uf key = gr { dataMap = Map.adjust uf' key $ dataMap gr } where
uf' (x, y, z) = (uf x, y, z)
-- | Updates the depgraph at the given key with the new value.
-- The dependencies are recomputed. If the key does not exist in the graph
-- it is added to the graph.
updateGraph :: (Ord a, Ord c) => DepGraph a b c -> a -> b -> DepGraph a b c
updateGraph gr key val =
-- update the pred-set of all smaller entries
let (mOv, nm) = Map.insertLookupWithKey f key nval $ dataMap gr
npl = getPredecessors gr key val
nval = (val, Set.empty, Set.fromList npl)
f _ (v', _, nps) (_, oss, _) = (v', oss, nps)
nm' = case mOv of
Just (_, _, ops) ->
Set.fold rmFromSucc nm ops
_ -> nm
rmFromSucc c m = Map.adjust g1 (getKey gr c) m
g1 (x, dss, dps) = (x, Set.delete key dss, dps)
nm'' = foldl insSucc nm' npl
insSucc m c = Map.adjust g2 (getKey gr c) m
g2 (x, dss, dps) = (x, Set.insert key dss, dps)
in gr { dataMap = nm'' }
data DepGraphAnno a = DepGraphAnno
{ annoDef :: AssDefinition
, annoVal :: a } deriving (Show, Eq, Ord)
instance Pretty a => Pretty (DepGraphAnno a) where
pretty (DepGraphAnno { annoDef = def, annoVal = av }) =
braces $ pretty def <> text ":" <+> pretty av
type AssignmentDepGraph a =
DepGraph ConstantName (DepGraphAnno a) ConstantName
assDepGraphFromDescList :: (ConstantName -> AssDefinition -> a)
-> [(ConstantName, AssDefinition)]
-> AssignmentDepGraph a
assDepGraphFromDescList f l = depGraphFromDescList getPs id $ map g l where
g (cn, ad) = (cn, DepGraphAnno { annoDef = ad, annoVal = f cn ad })
getPs _ = map SimpleConstant . Set.toList . setOfUserDefined . getDefiniens
. annoDef
{- OLD, using instantiated constants
type AssignmentDepGraph a =
DepGraph ConstantName (DepGraphAnno a) InstantiatedConstant
assDepGraphFromDescList :: (ConstantName -> AssDefinition -> a)
-> [(ConstantName, AssDefinition)]
-> AssignmentDepGraph a
assDepGraphFromDescList f l = depGraphFromDescList getPs constName $ map g l where
g (cn, ad) = (cn, DepGraphAnno { annoDef = ad, annoVal = f cn ad })
getPs _ = Set.toList . setOfUserDefinedICs . getDefiniens . annoDef
-}