AS_BASIC_CSL.hs revision f8adc2a1376cd0946ec912a7f468cc05059a46dc
{-# LANGUAGE TypeSynonymInstances, FlexibleInstances #-}
{- |
Module : $Header$
Description : Abstract syntax for CSL
Copyright : (c) Dominik Dietrich, Ewaryst Schulz, DFKI Bremen 2010
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Ewaryst.Schulz@dfki.de
Stability : experimental
Portability : portable
This file contains the abstract syntax for CSL as well as pretty printer for it.
-}
module CSL.AS_BASIC_CSL
( EXPRESSION (..) -- datatype for numerical expressions (e.g. polynomials)
, EXTPARAM (..) -- datatype for extended parameters (e.g. [I=0])
, BASIC_ITEM (..) -- Items of a Basic Spec
, BASIC_SPEC (..) -- Basic Spec
, SYMB_ITEMS (..) -- List of symbols
, SYMB (..) -- Symbols
, SYMB_MAP_ITEMS (..) -- Symbol map
, SYMB_OR_MAP (..) -- Symbol or symbol map
, OPNAME (..) -- predefined operator names
, OPID (..) -- identifier for operators
, ConstantName (..) -- names of user-defined constants
, OP_ITEM (..) -- operator declaration
, VAR_ITEM (..) -- variable declaration
, EP_item (..) -- extparam declaration
, EPComponent (..) -- raw extparam declaration
, epNameOfComp
, Domain -- domains for variable declarations
, EPDomain -- domains for extended parameter declarations
, GroundConstant (..) -- constants for domain formation
, cmpFloatToInt -- comparer for APFloat with APInt
, AssDefinition (..) -- A function or constant definition
, getDefiniens -- accessor function for AssDefinition
, getArguments -- accessor function for AssDefinition
, isFunDef -- predicate for AssDefinition
, isInterval -- predicate for EXPRESSION
, mkDefinition -- constructor for AssDefinition
, updateDefinition -- updates the definiens
, InstantiatedConstant(..) -- for function constants we need to store the
-- instantiation
, CMD (..) -- Command datatype
, OperatorState (..) -- Class providing operator lookup
, mapExpr -- maps function over EXPRESSION arguments
, mkVar -- Variable constructor
, mkOp -- Simple Operator constructor
, mkPredefOp -- Simple Operator constructor for predefined ops
, mkAndAnalyzeOp
, mkAndAnalyzeOp'
, toElimConst -- Constant naming for elim constants, see Analysis.hs
, OpInfo (..) -- Type for Operator information
, BindInfo (..) -- Type for Binder information
, operatorInfo -- Operator information for pretty printing
-- and static analysis
, operatorInfoMap -- allows efficient lookup of ops by printname
, operatorInfoNameMap -- allows efficient lookup of ops by opname
, mergeOpArityMap -- for combining two operator arity maps
, getOpInfoMap
, getOpInfoNameMap
, lookupOpInfo
, lookupOpInfoForParsing
, lookupBindInfo
, APInt, APFloat -- arbitrary precision numbers
, toFraction, fromFraction
, OpInfoMap
, OpInfoNameMap
, setOfUserDefined
, setOfUserDefinedICs
, simpleName
, showOPNAME
, maxPrecedence
) where
import Common.Id as Id
import Common.AS_Annotation as AS_Anno
import qualified Data.Map as Map
import qualified Data.Set as Set
import Data.Ratio
import CSL.TreePO
-- Imports for workaround...
import ATerm.Lib
import Data.Typeable
-- ---------------------------------------------------------------------------
-- * Preliminaries and Utilities
-- ---------------------------------------------------------------------------
-- Arbitrary precision numbers
type APInt = Integer
type APFloat = Rational
cmpFloatToInt :: APFloat -> APInt -> Ordering
cmpFloatToInt a b = compare a $ fromFraction b 1
fromFraction :: Integer -> Integer -> APFloat
fromFraction = (%)
toFraction :: APFloat -> (Integer, Integer)
toFraction r = (numerator r, denominator r)
-- | A simple operator constructor from given operator name and arguments
mkOp :: String -> [EXPRESSION] -> EXPRESSION
mkOp s el = Op (OpUser $ SimpleConstant s) [] el nullRange
-- | A variable constructor
mkVar :: String -> EXPRESSION
mkVar = Var . mkSimpleId
-- | A simple operator constructor from given operator id and arguments
mkPredefOp :: OPNAME -> [EXPRESSION] -> EXPRESSION
mkPredefOp n el = Op (OpId n) [] el nullRange
mkAndAnalyzeOp :: OperatorState st => st -> String -> [EXTPARAM] -> [EXPRESSION]
-> Range -> EXPRESSION
mkAndAnalyzeOp st s eps exps rg = either f g $ mkAndAnalyzeOp' st s eps exps rg
where f = error
g e = e
foldNaryToBinary :: OPID -> Range -> [EXPRESSION] -> EXPRESSION
foldNaryToBinary op rg exps = foldl f (f (exps!!0) (exps!!1)) $ drop 2 exps
where f e' e'' = Op op [] [e', e''] rg
-- | Lookup the string in the given 'OperatorState'
mkAndAnalyzeOp' :: OperatorState st => st -> String -> [EXTPARAM] -> [EXPRESSION]
-> Range -> Either String EXPRESSION
mkAndAnalyzeOp' st s eps exps rg =
case lookupOperator st s (length exps) of
Left False -> f $ OpUser $ SimpleConstant s
-- if registered it must be registered with the given arity or
-- as flex-op, otherwise we don't accept it
Left True -> Left "Wrong arity"
Right oi
| null eps ->
if foldNAry oi && length exps > 2
then Right $ foldNaryToBinary (OpId $ opname oi) rg exps
else f $ OpId $ opname oi
| otherwise -> Left "No extended parameters allowed"
where f op = Right $ Op op eps exps rg
mapExpr :: (EXPRESSION -> EXPRESSION) -> EXPRESSION -> EXPRESSION
mapExpr f e =
case e of
Op oi epl args rg -> Op oi epl (map f args) rg
List exps rg -> List (map f exps) rg
_ -> e
-- ---------------------------------------------------------------------------
-- * EnCL Basic Data Structures and utils
-- ---------------------------------------------------------------------------
-- | operator symbol declaration
deriving Show
-- | variable symbol declaration
deriving Show
newtype BASIC_SPEC = Basic_spec [AS_Anno.Annoted (BASIC_ITEM)]
deriving Show
data GroundConstant = GCI APInt | GCR APFloat deriving Show
cmpGCs :: GroundConstant -> GroundConstant -> Ordering
cmpGCs (GCI a) (GCI b) = compare a b
cmpGCs (GCR a) (GCR b) = compare a b
cmpGCs (GCI a) (GCR b) = swapCompare $ cmpFloatToInt b a
cmpGCs (GCR a) (GCI b) = cmpFloatToInt a b
instance Eq GroundConstant where
a == b = cmpGCs a b == EQ
instance Ord GroundConstant where
compare = cmpGCs
instance Continuous GroundConstant
type Domain = SetOrInterval GroundConstant
type EPDomain = SetOrInterval InfInt
-- | A constant or function definition
data AssDefinition = ConstDef EXPRESSION | FunDef [String] EXPRESSION
deriving (Eq, Ord, Show)
updateDefinition :: EXPRESSION -> AssDefinition -> AssDefinition
updateDefinition e' (ConstDef _) = ConstDef e'
updateDefinition e' (FunDef l _) = FunDef l e'
mkDefinition :: [String] -> EXPRESSION -> AssDefinition
mkDefinition l e = if null l then ConstDef e else FunDef l e
getDefiniens :: AssDefinition -> EXPRESSION
getDefiniens (ConstDef e) = e
getDefiniens (FunDef _ e) = e
getArguments :: AssDefinition -> [String]
getArguments (FunDef l _) = l
getArguments _ = []
isFunDef :: AssDefinition -> Bool
isFunDef (FunDef _ _) = True
isFunDef _ = False
isInterval :: EXPRESSION -> Bool
isInterval (Interval _ _ _) = True
isInterval _ = False
data InstantiatedConstant = InstantiatedConstant
{ constName :: ConstantName
, instantiation :: [EXPRESSION] } deriving (Show, Eq, Ord)
-- | basic items: an operator, extended parameter or variable declaration or an axiom
data BASIC_ITEM =
Op_decl OP_ITEM
| EP_components [EPComponent]
| Var_decls [VAR_ITEM]
| Axiom_item (AS_Anno.Annoted CMD)
deriving Show
-- | Extended Parameter Datatype
data EXTPARAM = EP Id.Token String APInt deriving (Eq, Ord, Show)
-- | Raw components of Extended Parameter declarations
| EPSimple Id.Token deriving Show
epNameOfComp :: EPComponent -> Token
epNameOfComp (EPDomain s _) = s
epNameOfComp (EPDefault s _) = s
epNameOfComp (EPSimple s) = s
-- | Extended Parameter declaration
data EP_item = EP_item Id.Token -- name
(Maybe EPDomain) -- evtl. a domain over which the ep ranges
(Maybe APInt) -- evtl. a default value
deriving (Eq, Ord, Show)
data OPNAME =
-- arithmetic operators
OP_mult | OP_div | OP_plus | OP_minus | OP_neg | OP_pow
-- roots, trigonometric and other operators
| OP_fthrt | OP_sqrt | OP_abs | OP_max | OP_min | OP_sign
| OP_cos | OP_sin | OP_tan | OP_cot | OP_Pi
| OP_reldist
-- special CAS operators
| OP_minimize | OP_minloc | OP_maximize | OP_maxloc | OP_factor | OP_approx
| OP_divide | OP_factorize | OP_int | OP_rlqe | OP_simplify | OP_solve
-- comparison predicates
| OP_neq | OP_lt | OP_leq | OP_eq | OP_gt | OP_geq | OP_convergence
| OP_reldistLe
-- containment predicate
| OP_in
-- special CAS constants
| OP_undef | OP_failure
-- boolean constants and connectives
| OP_false | OP_true | OP_not | OP_and | OP_or | OP_impl
-- quantifiers
| OP_ex | OP_all
-- types
| OP_hastype | OP_real
deriving (Eq, Ord)
instance Show OPNAME where
show = showOPNAME
showOPNAME :: OPNAME -> String
showOPNAME x =
case x of
OP_neq -> "!="
OP_mult -> "*"
OP_plus -> "+"
OP_minus -> "-"
OP_neg -> "-"
OP_div -> "/"
OP_lt -> "<"
OP_leq -> "<="
OP_eq -> "="
OP_gt -> ">"
OP_geq -> ">="
OP_Pi -> "Pi"
OP_pow -> "^"
OP_abs -> "abs"
OP_sign -> "sign"
OP_all -> "all"
OP_and -> "and"
OP_convergence -> "convergence"
OP_cos -> "cos"
OP_divide -> "divide"
OP_ex -> "ex"
OP_factor -> "factor"
OP_factorize -> "factorize"
OP_fthrt -> "fthrt"
OP_impl -> "impl"
OP_int -> "int"
OP_max -> "max"
OP_maximize -> "maximize"
OP_maxloc -> "maxloc"
OP_min -> "min"
OP_minimize -> "minimize"
OP_minloc -> "minloc"
OP_not -> "not"
OP_or -> "or"
OP_reldist -> "reldist"
OP_reldistLe -> "reldistLe"
OP_rlqe -> "rlqe"
OP_simplify -> "simplify"
OP_sin -> "sin"
OP_solve -> "solve"
OP_sqrt -> "sqrt"
OP_tan -> "tan"
OP_cot -> "cot"
OP_false -> "false"
OP_true -> "true"
OP_in -> "in"
OP_approx -> "approx"
OP_undef -> "undef"
OP_failure -> "fail"
OP_hastype -> "::"
OP_real -> "real"
data OPID = OpId OPNAME | OpUser ConstantName deriving (Eq, Ord, Show)
-- | We differentiate between simple constant names and indexed constant names
-- resulting from the extended parameter elimination.
data ConstantName = SimpleConstant String | ElimConstant String Int
deriving (Eq, Ord, Show)
simpleName :: OPID -> String
simpleName (OpId n) = showOPNAME n
simpleName (OpUser (SimpleConstant s)) = s
simpleName (OpUser x) = error "simpleName: ElimConstant not supported: " ++ show x
{-
instance Show OPID where
show (OpId n) = show n
show (OpUser s) = show s
instance Show ConstantName where
show (SimpleConstant s) = s
show (ElimConstant s i) = if i > 0 then s ++ "__" ++ show i else s
-}
toElimConst :: ConstantName -> Int -> ConstantName
toElimConst (SimpleConstant s) i = ElimConstant s i
toElimConst ec _ = error $ "toElimConst: already an elim const " ++ show ec
-- | Datatype for expressions
data EXPRESSION =
Var Id.Token
| Op OPID [EXTPARAM] [EXPRESSION] Id.Range
-- TODO: don't need lists anymore, they should be removed soon
| List [EXPRESSION] Id.Range
| Interval Double Double Id.Range
| Int APInt Id.Range
| Rat APFloat Id.Range
deriving (Eq, Ord, Show)
-- TODO: add Range-support to this type
data CMD = Ass EXPRESSION EXPRESSION
| Cmd String [EXPRESSION]
| Sequence [CMD] -- program sequence
| Cond [(EXPRESSION, [CMD])]
| Repeat EXPRESSION [CMD] -- constraint, statements
deriving (Show, Eq, Ord)
-- | symbol lists for hiding
data SYMB_ITEMS = Symb_items [SYMB] Id.Range
-- pos: SYMB_KIND, commas
deriving (Show, Eq)
-- | symbol for identifiers
newtype SYMB = Symb_id Id.Token
-- pos: colon
deriving (Show, Eq)
-- | symbol maps for renamings
data SYMB_MAP_ITEMS = Symb_map_items [SYMB_OR_MAP] Id.Range
-- pos: SYMB_KIND, commas
deriving (Show, Eq)
-- | symbol map or renaming (renaming then denotes the identity renaming)
data SYMB_OR_MAP = Symb SYMB
| Symb_map SYMB SYMB Id.Range
-- pos: "|->"
deriving (Show, Eq)
-- ---------------------------------------------------------------------------
-- * Predefined Operators: info for parsing/printing and static analysis
-- ---------------------------------------------------------------------------
data BindInfo = BindInfo { bindingVarPos :: [Int] -- ^ argument positions of
-- binding variables
, boundBodyPos :: [Int] -- ^ argument positions of
-- bound terms
} deriving (Eq, Ord, Show)
data OpInfo = OpInfo { prec :: Int -- ^ precedence between 0 and maxPrecedence
, infx :: Bool -- ^ True = infix
, arity :: Int -- ^ the operator arity
, foldNAry :: Bool -- ^ True = fold nary-applications
-- during construction into binary ones
, opname :: OPNAME -- ^ The actual operator name
, bind :: Maybe BindInfo -- ^ More info for binders
} deriving (Eq, Ord, Show)
type ArityMap = Map.Map Int OpInfo
type OpInfoArityMap a = Map.Map a ArityMap
type OpInfoMap = OpInfoArityMap String
type OpInfoNameMap = OpInfoArityMap OPNAME
-- | Merges two OpInfoArityMaps together with the first map as default map
-- and the second overwriting the default values
mergeOpArityMap :: Ord a => OpInfoArityMap a -> OpInfoArityMap a
-> OpInfoArityMap a
mergeOpArityMap = flip $ Map.unionWith Map.union
-- | Mapping of operator names to arity-'OpInfo'-maps (an operator may
-- behave differently for different arities).
getOpInfoMap :: (OpInfo -> String) -> [OpInfo] -> OpInfoMap
getOpInfoMap pf oinfo = foldl f Map.empty oinfo
where f m oi = Map.insertWith Map.union (pf oi)
(Map.fromList [(arity oi, oi)]) m
-- | Same as operatorInfoMap but with keys of type OPNAME instead of String
getOpInfoNameMap :: [OpInfo] -> OpInfoNameMap
getOpInfoNameMap oinfo = foldl f Map.empty oinfo
where f m oi = Map.insertWith Map.union (opname oi)
(Map.fromList [(arity oi, oi)]) m
-- | opInfoMap for the predefined 'operatorInfo'
operatorInfoMap :: OpInfoMap
operatorInfoMap = getOpInfoMap (show . opname) operatorInfo
-- | opInfoNameMap for the predefined 'operatorInfo'
operatorInfoNameMap :: OpInfoNameMap
operatorInfoNameMap = getOpInfoNameMap operatorInfo
-- | Mapping of operator names to arity-'OpInfo'-maps (an operator may
-- behave differently for different arities).
operatorInfo :: [OpInfo]
operatorInfo =
let -- arity (-1 means flex), precedence, infix
toSgl n i p = OpInfo { prec = if p == 0 then maxPrecedence else p
, infx = p > 0
, arity = i
, opname = n
, foldNAry = False
, bind = Nothing
}
toSglBind n i bv bb =
OpInfo { prec = maxPrecedence
, infx = False
, arity = i
, opname = n
, foldNAry = False
, bind = Just $ BindInfo [bv] [bb]
}
-- arityX simple ops
aX i s = toSgl s i 0
-- arityflex simple ops
aflex = aX (-1)
-- arity2 binder
a2bind bv bb s = toSglBind s 2 bv bb
-- arity4 binder
a4bind bv bb s = toSglBind s 4 bv bb
-- arity2 infix with precedence
a2i p s = toSgl s 2 p
in map (aX 0) [ OP_failure, OP_undef, OP_Pi, OP_true, OP_false, OP_real ]
++ map (aX 1)
[ OP_neg, OP_cos, OP_sin, OP_tan, OP_cot, OP_sqrt, OP_fthrt
, OP_abs, OP_sign, OP_simplify, OP_rlqe, OP_factor
, OP_factorize ]
++ map (a2i 5) [ OP_hastype ]
++ map (a2bind 0 1) [ OP_ex, OP_all ]
++ map (a2i 30) [ OP_or, OP_impl ]
++ map (a2i 40) [ OP_and ]
++ map (a2i 50) [ OP_eq, OP_gt, OP_leq, OP_geq, OP_neq, OP_lt, OP_in]
++ map (a2i 60) [ OP_plus ]
++ map (a2i 70) [ OP_minus ]
++ map (a2i 80) [OP_mult]
++ map (a2i 90) [OP_div]
++ map (a2i 100) [OP_pow]
++ map (aX 2)
[ OP_int, OP_divide, OP_solve, OP_convergence, OP_reldist
, OP_approx]
++ map (aX 3) [OP_reldistLe]
++ map aflex [ OP_min, OP_max ]
++ map (a2bind 1 0) [ OP_maximize, OP_minimize ]
++ map (a4bind 1 0) [ OP_maxloc, OP_minloc ]
maxPrecedence :: Int
maxPrecedence = 120
-- ---------------------------------------------------------------------------
-- * OpInfo lookup utils
-- ---------------------------------------------------------------------------
class OperatorState a where
lookupOperator :: a
-> String -- ^ operator name
-> Int -- ^ operator arity
-> Either Bool OpInfo
instance OperatorState () where
lookupOperator _ = lookupOpInfoForParsing operatorInfoMap
instance OperatorState OpInfoMap where
lookupOperator = lookupOpInfoForParsing
-- | For the given name and arity we lookup an 'OpInfo', where arity=-1
-- means flexible arity. If an operator is registered for the given
-- string but not for the arity we return: Left True.
-- This function is designed for the lookup of operators in not statically
-- analyzed terms. For statically analyzed terms use lookupOpInfo.
lookupOpInfoForParsing :: OpInfoMap -- ^ map to be used for lookup
-> String -- ^ operator name
-> Int -- ^ operator arity
-> Either Bool OpInfo
lookupOpInfoForParsing oiMap op arit =
case Map.lookup op oiMap of
Just oim ->
case Map.lookup arit oim of
Just x -> Right x
Nothing ->
case Map.lookup (-1) oim of
Just x -> Right x
_ -> Left True
_ -> Left False
-- | For the given name and arity we lookup an 'OpInfo', where arity=-1
-- means flexible arity. If an operator is registered for the given
-- string but not for the arity we return: Left True.
lookupOpInfo :: OpInfoNameMap -> OPID -- ^ operator id
-> Int -- ^ operator arity
-> Either Bool OpInfo
lookupOpInfo oinm (OpId op) arit =
case Map.lookup op oinm of
Just oim ->
case Map.lookup arit oim of
Just x -> Right x
Nothing ->
case Map.lookup (-1) oim of
Just x -> Right x
_ -> Left True
_ -> error $ "lookupOpInfo: no opinfo for " ++ show op
lookupOpInfo _ (OpUser _) _ = Left False
-- | For the given name and arity we lookup an 'BindInfo', where arity=-1
-- means flexible arity.
lookupBindInfo :: OpInfoNameMap -> OPID -- ^ operator name
-> Int -- ^ operator arity
-> Maybe BindInfo
lookupBindInfo oinm (OpId op) arit =
case Map.lookup op oinm of
Just oim ->
case Map.lookup arit oim of
Just x -> bind x
_ -> Nothing
_ -> error $ "lookupBindInfo: no opinfo for " ++ show op
lookupBindInfo _ (OpUser _) _ = Nothing
-- | Returns a set of user defined constants ignoring 'EXTPARAM' instantiation.
setOfUserDefined :: EXPRESSION -> Set.Set String
setOfUserDefined e = g Set.empty e
where
g s x =
case x of
Op oi@(OpUser _) _ al _ -> foldl g (Set.insert (simpleName oi) s) al
-- handle also non-userdefined ops.
Op _ _ al _ -> foldl g s al
-- ignoring lists (TODO: they should be removed soon anyway)
_ -> s
-- | Returns a set of user defined constants with function instantiation,
-- but ignoring 'EXTPARAM' instantiation.
setOfUserDefinedICs :: EXPRESSION -> Set.Set InstantiatedConstant
setOfUserDefinedICs e = g Set.empty e
where
f sc al = InstantiatedConstant { constName = sc, instantiation = al }
g s x =
case x of
Op (OpUser sc@(SimpleConstant _)) _ al _ ->
foldl g (Set.insert (f sc al) s) al
Op (OpUser _) _ _ _ ->
error "setOfUserDefinedICs: Elim constant encountered"
-- handle also non-userdefined ops.
Op _ _ al _ -> foldl g s al
-- ignoring lists (TODO: they should be removed soon anyway)
_ -> s
-- TODO: remove workaround!
-- WORKAROUND for imported datatypes used in abstract syntax. These instances should be derived automatically!
instance (Ord a, ShATermConvertible a) => ShATermConvertible (SetOrInterval a) where
toShATermAux att0 xv = case xv of
Set a -> do
(att1, a') <- toShATerm' att0 a
return $ addATerm (ShAAppl "Set" [a'] []) att1
IntVal a b -> do
(att1, a') <- toShATerm' att0 a
(att2, b') <- toShATerm' att1 b
return $ addATerm (ShAAppl "IntVal" [a', b'] []) att2
fromShATermAux ix att0 = case getShATerm ix att0 of
ShAAppl "Set" [a] _ ->
case fromShATerm' a att0 of
{ (att1, a') ->
(att1, Set a') }
ShAAppl "IntVal" [a, b] _ ->
case fromShATerm' a att0 of
{ (att1, a') ->
case fromShATerm' b att1 of
{ (att2, b') ->
(att2, IntVal a' b') }}
u -> fromShATermError "SetOrInterval" u
_tcSetOrIntervalTc :: TyCon
_tcSetOrIntervalTc = mkTyCon "CSL.AS_BASIC_CSL.SetOrInterval"
instance Typeable1 SetOrInterval where
typeOf1 _ = mkTyConApp _tcSetOrIntervalTc []
instance Typeable InfInt where
typeOf = error "Typeable InfInt instance missing"
instance ShATermConvertible InfInt where
toShATermAux = error "ShATermConvertible InfInt instance missing"
fromShATermAux = error "ShATermConvertible InfInt instance missing"