PredefinedCASLAxioms.hs revision d3e5e8585e4e83f5bb2803123552dc7001bbfc72
{- |
Module : PredefinedSign.hs
Description : with inlined axioms
Copyright : (c) Uni and DFKI Bremen 2005-2007
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
-}
module CASL_DL.PredefinedCASLAxioms
( predefSign
, thing
, nothing
, conceptPred
, dataS
, predefinedAxioms
, mkNName
, mkDigit
, joinDigits
, consChar
, emptyStringTerm
, trueT
, falseT
) where
import CASL.AS_Basic_CASL
import CASL.Sign
import Common.AS_Annotation
import Common.Id
import Common.GlobalAnnotations
import qualified Common.Lib.Rel as Rel
import qualified Common.Lib.MapSet as MapSet
import Data.Char
hetsPrefix :: String
hetsPrefix = ""
-- | OWL topsort Thing
thing :: SORT
thing = stringToId "Thing"
n :: Range
n = nullRange
nothing :: Id
nothing = stringToId "Nothing"
-- | OWL Data topSort DATA
dataS :: Id
dataS = stringToId "DATA"
integer :: Id
integer = stringToId "integer"
posInt :: Id
posInt = stringToId "positiveInteger"
negInt :: Id
negInt = stringToId "negativeInteger"
nonPosInt :: Id
nonPosInt = stringToId "nonPositiveInteger"
nonNegInt :: Id
nonNegInt = stringToId "nonNegativeInteger"
classPredType :: PRED_TYPE
classPredType = Pred_type [thing] n
conceptPred :: PredType
conceptPred = toPredType classPredType
boolS :: Id
boolS = stringToId "boolean"
boolT :: OpType
boolT = mkTotOpType [] boolS
trueS :: Id
trueS = stringToId "True"
falseS :: Id
falseS = stringToId "False"
trueT :: TERM ()
trueT = mkAppl (mkQualOp trueS $ toOP_TYPE boolT) []
falseT :: TERM ()
falseT = mkAppl (mkQualOp falseS $ toOP_TYPE boolT) []
natT :: OpType
natT = mkTotOpType [] nonNegInt
mkDigit :: Int -> TERM ()
mkDigit i = mkAppl (mkQualOp (stringToId $ show i) $ toOP_TYPE natT) []
unMinus :: Id
unMinus = mkId [mkSimpleId "-", placeTok]
minusTy :: OpType
minusTy = mkTotOpType [integer] integer
atAt :: Id
atAt = mkInfix "@@"
atAtTy :: OpType
atAtTy = mkTotOpType [nonNegInt, nonNegInt] nonNegInt
joinDigits :: TERM () -> TERM () -> TERM ()
joinDigits d1 d2 = mkAppl (mkQualOp atAt $ toOP_TYPE atAtTy) [d1, d2]
charS :: Id
charS = stringToId "Char"
charT :: OpType
charT = mkTotOpType [] charS
stringS :: Id
stringS = stringToId "string"
cons :: Id
cons = mkInfix ":@:"
emptyString :: Id
emptyString = stringToId $ "emptyString"
emptyStringTerm :: TERM ()
emptyStringTerm = mkAppl (mkQualOp emptyString $ toOP_TYPE emptyStringTy) []
charToId :: Char -> Id
charToId c = let s = show (ord c) in
stringToId $ "'\\" ++ replicate (3 - length s) '0' ++ show (ord c) ++ "'"
mkChar :: Char -> TERM ()
mkChar c = mkAppl (mkQualOp (charToId c) $ toOP_TYPE charT) []
consChar :: Char -> TERM () -> TERM ()
consChar c t = mkAppl (mkQualOp cons $ toOP_TYPE consTy) [mkChar c, t]
emptyStringTy :: OpType
emptyStringTy = mkTotOpType [] stringS
consTy :: OpType
consTy = mkTotOpType [charS, stringS] stringS
-- | OWL bottom
noThing :: PRED_SYMB
noThing = Qual_pred_name nothing classPredType n
predefSign :: CASLSign
predefSign = (emptySign ())
{ sortRel = Rel.insertKey (stringToId "Char")
$ Rel.insertKey thing
$ Rel.transClosure $ Rel.fromList
[
(boolS,
dataS),
(integer,
dataS),
(negInt,
dataS),
(negInt,
integer),
(negInt,
nonPosInt),
(nonNegInt,
dataS),
(nonNegInt,
integer),
(nonPosInt,
dataS),
(nonPosInt,
integer),
(posInt,
dataS),
(posInt,
integer),
(posInt,
nonNegInt),
(posInt,
dataS),
(posInt,
integer),
(posInt,
nonNegInt),
(stringS,
dataS),
(dataS, thing) ]
, predMap =
MapSet.fromList
[(nothing,
[conceptPred]),
(mkInfix "<",
[PredType
[integer,
integer],
PredType
[nonNegInt,
nonNegInt]]),
(mkInfix "<=",
[PredType
[integer,
integer],
PredType
[nonNegInt,
nonNegInt]]),
(mkInfix ">",
[PredType
[integer,
integer],
PredType
[nonNegInt,
nonNegInt]]),
(mkInfix ">=",
[PredType
[integer,
integer],
PredType
[nonNegInt,
nonNegInt]]),
(stringToId "even",
[PredType [integer],
PredType
[nonNegInt]]),
(stringToId "odd",
[PredType [integer],
PredType
[nonNegInt]])]
, opMap = MapSet.fromList
$ map (\ i -> (stringToId $ show i, [natT]))
[0 .. 9 :: Int]
++ map (\ c -> (charToId c, [charT]))
[chr 0 .. chr 127]
++
[ (trueS, [boolT])
, (falseS, [boolT])
, (atAt, [atAtTy])
, (unMinus, [minusTy])
, (cons, [consTy])
, (emptyString, [emptyStringTy])
]
, globAnnos = emptyGlobalAnnos
{ literal_annos = emptyLiteralAnnos
{ number_lit = Just atAt
, string_lit = Just (emptyString, cons) }}
}
predefinedAxioms :: [Named (FORMULA ())]
predefinedAxioms = let
v1 = mkVarDecl (mkNName 1) thing
t1 = toQualVar v1
in
[
makeNamed "nothing in Nothing" $
mkForall
[v1]
(
Negation
(
Predication
noThing
[t1]
n
)
n
)
,
makeNamed "thing in Thing" $
mkForall
[v1]
(
Predication
(Qual_pred_name thing classPredType n)
[t1]
n
)
]
-- | Build a name
mkNName :: Int -> Token
mkNName i = mkSimpleId $ hetsPrefix ++ mkNNameAux i
where
mkNNameAux k =
case k of
0 -> ""
j -> mkNNameAux (j `div` 26) ++ [chr (j `mod` 26 + 96)]