PredefinedCASLAxioms.hs revision 28c22436497e6d33c031c76be0e46026b77cb1cd
{- |
Module : PredefinedSign.hs
Description : with inlined axioms
Copyright : (c) Uni and DFKI Bremen 2005-2007
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
-}
module CASL_DL.PredefinedCASLAxioms
( predefSign
, predefinedSign
, thing
, nothing
, conceptPred
, dataPred
, dataS
, predefinedAxioms
, mkNName
, mkDigit
, joinDigits
, negateInt
, integer
, float
, negateFloat
, posInt
, nonPosInt
, decimal
, double
, upcast
, mkDecimal
, mkFloat
, consChar
, emptyStringTerm
, trueT
, falseT
, nonNegInt
, negIntS
, stringS
) where
import CASL.AS_Basic_CASL
import CASL.Sign
import OWL2.Keywords
import Common.AS_Annotation
import Common.Id
import Common.GlobalAnnotations
import qualified Common.Lib.Rel as Rel
import qualified Common.Lib.MapSet as MapSet
import Data.Char
hetsPrefix :: String
hetsPrefix = ""
-- | OWL topsort Thing
thing :: SORT
thing = stringToId thingS
n :: Range
n = nullRange
nothing :: SORT
nothing = stringToId nothingS
-- | OWL Data topSort DATA
dataS :: SORT
dataS = stringToId dATAS
integer :: SORT
integer = stringToId integerS
float :: SORT
float = stringToId floatS
decimal :: SORT
decimal = stringToId decimalS
double :: SORT
double = stringToId doubleS
posInt :: SORT
posInt = stringToId positiveIntegerS
negIntS :: SORT
negIntS = stringToId negativeIntegerS
nonPosInt :: SORT
nonPosInt = stringToId nonPositiveIntegerS
nonNegInt :: SORT
nonNegInt = stringToId nonNegativeIntegerS
classPredType :: PRED_TYPE
classPredType = Pred_type [thing] n
conceptPred :: PredType
conceptPred = toPredType classPredType
dataPred :: PredType
dataPred = PredType [dataS, dataS]
boolS :: SORT
boolS = stringToId "boolean"
boolT :: OpType
boolT = mkTotOpType [] boolS
trueS :: Id
trueS = stringToId "True"
falseS :: Id
falseS = stringToId "False"
mkConst :: Id -> OpType -> TERM ()
mkConst i o = mkAppl (mkQualOp i $ toOP_TYPE o) []
trueT :: TERM ()
trueT = mkConst trueS boolT
falseT :: TERM ()
falseT = mkConst falseS boolT
natT :: OpType
natT = mkTotOpType [] nonNegInt
-- | create a term of type nonNegativeInteger
mkDigit :: Int -> TERM ()
mkDigit i = mkConst (stringToId $ show i) natT
unMinus :: Id
unMinus = mkId [mkSimpleId "-", placeTok]
minusTy :: OpType
minusTy = mkTotOpType [integer] integer
minusFloat :: OpType
minusFloat = mkTotOpType [float] float
negateTy :: OpType -> TERM () -> TERM ()
negateTy o t = mkAppl (mkQualOp unMinus $ toOP_TYPE o) [t]
-- | negate a term of type integer
negateInt :: TERM () -> TERM ()
negateInt = negateTy minusTy
-- | negate a term of type float
negateFloat :: TERM () -> TERM ()
negateFloat = negateTy minusFloat
atAt :: Id
atAt = mkInfix "@@"
atAtTy :: OpType
atAtTy = mkTotOpType [nonNegInt, nonNegInt] nonNegInt
mkBinOp :: Id -> OpType -> TERM () -> TERM () -> TERM ()
mkBinOp i o t1 t2 = mkAppl (mkQualOp i $ toOP_TYPE o) [t1, t2]
-- | join two terms of type nonNegativeInteger
joinDigits :: TERM () -> TERM () -> TERM ()
joinDigits = mkBinOp atAt atAtTy
dec :: Id
dec = mkInfix ":::"
decTy :: OpType
decTy = mkTotOpType [nonNegInt, nonNegInt] float
{- | create the float given by two non-negative integers separated by the
decimal point -}
mkDecimal :: TERM () -> TERM () -> TERM ()
mkDecimal = mkBinOp dec decTy
eId :: Id
eId = mkInfix "E"
expTy :: OpType
expTy = mkTotOpType [float, integer] float
-- | construct the E float, where the second argument is of type integer
mkFloat :: TERM () -> TERM () -> TERM ()
mkFloat = mkBinOp eId expTy
-- | upcast a term to a matching sort
upcast :: TERM () -> SORT -> TERM ()
upcast t ty = Sorted_term t ty nullRange
charS :: Id
charS = stringToId "Char"
charT :: OpType
charT = mkTotOpType [] charS
stringS :: Id
stringS = stringToId "string"
cons :: Id
cons = mkInfix ":@:"
emptyString :: Id
emptyString = stringToId $ "emptyString"
emptyStringTerm :: TERM ()
emptyStringTerm = mkAppl (mkQualOp emptyString $ toOP_TYPE emptyStringTy) []
charToId :: Char -> Id
charToId c = let s = show (ord c) in
stringToId $ "'\\" ++ replicate (3 - length s) '0' ++ show (ord c) ++ "'"
mkChar :: Char -> TERM ()
mkChar c = mkAppl (mkQualOp (charToId c) $ toOP_TYPE charT) []
consChar :: Char -> TERM () -> TERM ()
consChar c t = mkAppl (mkQualOp cons $ toOP_TYPE consTy) [mkChar c, t]
emptyStringTy :: OpType
emptyStringTy = mkTotOpType [] stringS
consTy :: OpType
consTy = mkTotOpType [charS, stringS] stringS
-- | OWL bottom
noThing :: PRED_SYMB
noThing = Qual_pred_name nothing classPredType n
intTypes :: [PredType]
intTypes = map (\ t -> PredType [t]) [integer, nonNegInt]
predefinedSign :: e -> Sign f e
predefinedSign e = (emptySign e)
{ sortRel = Rel.insertKey (stringToId "Char")
$ Rel.insertKey thing
[(boolS, dataS),
(integer, float),
(float, dataS),
(negIntS, nonPosInt),
(nonNegInt, integer),
(nonPosInt, integer),
(posInt, nonNegInt),
(stringS, dataS) ]
, predMap =
$ (nothing, [conceptPred])
: map ( \ o -> (mkInfix o, [dataPred]))
(map showFacet facetList)
++ map ( \ o -> (stringToId o, intTypes))
["even", "odd"]
, opMap = MapSet.fromList
$ map (\ i -> (stringToId $ show i, [natT]))
[0 .. 9 :: Int]
++ map (\ c -> (charToId c, [charT]))
[chr 0 .. chr 127]
++
[ (trueS, [boolT])
, (falseS, [boolT])
, (atAt, [atAtTy])
, (unMinus, [minusTy, minusFloat])
, (dec, [decTy])
, (eId, [expTy])
, (cons, [consTy])
, (emptyString, [emptyStringTy])
]
, globAnnos = emptyGlobalAnnos
{ literal_annos = emptyLiteralAnnos
{ number_lit = Just atAt
, float_lit = Just (dec, eId)
, string_lit = Just (emptyString, cons) }}
}
predefSign :: CASLSign
predefSign = predefinedSign ()
predefinedAxioms :: [Named (FORMULA ())]
predefinedAxioms = let
v1 = mkVarDecl (mkNName 1) thing
t1 = toQualVar v1
in [makeNamed "nothing in Nothing" $ mkForall [v1] $ Negation
(Predication noThing [t1] n) n,
makeNamed "thing in Thing" $ mkForall [v1] $ Predication
(Qual_pred_name thing classPredType n) [t1] n]
mkNNameAux :: Int -> String
mkNNameAux k = case k of
0 -> ""
j -> mkNNameAux (j `div` 26) ++ [chr (j `mod` 26 + 96)]
-- | Build a name
mkNName :: Int -> Token
mkNName i = mkSimpleId $ hetsPrefix ++ mkNNameAux i