PredefinedCASLAxioms.hs revision 148897af8457fe167e0e310dc3f9a60e10381f5d
{- |
Module : PredefinedSign.hs
Description : with inlined axioms
Copyright : (c) Uni and DFKI Bremen 2005-2007
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
-}
module CASL_DL.PredefinedCASLAxioms
( predefSign
, thing
, nothing
, conceptPred
, dataS
, predefinedAxioms
, mkNName
) where
import CASL.AS_Basic_CASL
import CASL.Sign
import Common.AS_Annotation
import Common.Id
import Common.Lib.Rel as Rel
import qualified Common.Lib.MapSet as MapSet
import Data.Char
hetsPrefix :: String
hetsPrefix = ""
-- | OWL topsort Thing
thing :: SORT
thing = stringToId "Thing"
n :: Range
n = nullRange
nothing :: Id
nothing = stringToId "Nothing"
-- | OWL Data topSort DATA
dataS :: Id
dataS = stringToId "DATA"
integer :: Id
integer = stringToId "integer"
posInt :: Id
posInt = stringToId "positiveInteger"
negInt :: Id
negInt = stringToId "negativeInteger"
nonPosInt :: Id
nonPosInt = stringToId "nonPositiveInteger"
nonNegInt :: Id
nonNegInt = stringToId "nonNegativeInteger"
classPredType :: PRED_TYPE
classPredType = Pred_type [thing] n
conceptPred :: PredType
conceptPred = toPredType classPredType
-- | OWL bottom
noThing :: PRED_SYMB
noThing = Qual_pred_name nothing classPredType n
predefSign :: CASLSign
predefSign = (emptySign ())
{ sortRel = Rel.insertKey (stringToId "Char")
$ Rel.insertKey dataS
[
(stringToId "boolean",
dataS),
(integer,
dataS),
(negInt,
dataS),
(negInt,
integer),
(negInt,
nonPosInt),
(nonNegInt,
dataS),
(nonNegInt,
integer),
(nonPosInt,
dataS),
(nonPosInt,
integer),
(posInt,
dataS),
(posInt,
integer),
(posInt,
nonNegInt),
(posInt,
dataS),
(posInt,
integer),
(posInt,
nonNegInt),
(stringToId "string",
dataS)]
, predMap =
[(nothing,
[conceptPred]),
(mkInfix "<",
[PredType
[integer,
integer],
PredType
[nonNegInt,
nonNegInt]]),
(mkInfix "<=",
[PredType
[integer,
integer],
PredType
[nonNegInt,
nonNegInt]]),
(mkInfix ">",
[PredType
[integer,
integer],
PredType
[nonNegInt,
nonNegInt]]),
(mkInfix ">=",
[PredType
[integer,
integer],
PredType
[nonNegInt,
nonNegInt]]),
(stringToId "even",
[PredType [integer],
PredType
[nonNegInt]]),
(stringToId "odd",
[PredType [integer],
PredType
[nonNegInt]])]}
predefinedAxioms :: [Named (FORMULA ())]
predefinedAxioms = let
v1 = mkVarDecl (mkNName 1) thing
t1 = toQualVar v1
in
[
makeNamed "nothing in Nothing" $
mkForall
[v1]
(
Negation
(
Predication
noThing
[t1]
n
)
n
)
n
,
makeNamed "thing in Thing" $
mkForall
[v1]
(
Predication
(Qual_pred_name thing classPredType n)
[t1]
n
)
n
]
-- | Build a name
mkNName :: Int -> Token
mkNName i = mkSimpleId $ hetsPrefix ++ mkNNameAux i
where
mkNNameAux k =
case k of
0 -> ""
j -> mkNNameAux (j `div` 26) ++ [chr (j `mod` 26 + 96)]