Taxonomy.hs revision a2c117ca032ef5f4b85b038fbc79ba6699d048d3
{- |
Module : $Header$
Description : converters for theories to MMiSSOntology
(subsorting and concept taxonomies)
Copyright : (c) Klaus L�ttich, Uni Bremen 2002-2004
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : luecke@informatik.uni-bremen.de
Stability : provisional
Portability : portable
Converters for theories to MMiSSOntology (subsorting and concept taxonomies)
the functions showOntClass, showRelationName and showRelation may be used
for printing out MMiSS Ontologies in LaTeX to Stdout
(see commets marked with --printOut).
Please do not remove them without reason!!
-}
module CASL.Taxonomy
(-- * Conversion
convTaxo,
-- * Printing of MMiSS ontologies in LaTeX
showOntClass, showRelationName, showRelation) where
import qualified Data.Map as Map
import qualified Common.Lib.Rel as Rel
import qualified Data.Set as Set
import CASL.AS_Basic_CASL
import CASL.Sign
import Taxonomy.MMiSSOntology
import Common.Taxonomy
import Common.Result
import Common.Id ()
import Common.AS_Annotation
-- | convert a generic CASL signature into the MMiSS ontology
-- datastructure for display as taxonomy graph
convTaxo :: TaxoGraphKind -> MMiSSOntology
-> Sign f e
-> [Named (FORMULA f)] -> Result MMiSSOntology
convTaxo kind onto sign sens =
fromWithError $
case kind of
KSubsort -> convSign KSubsort onto sign
KConcept -> foldl convSen (convSign KConcept onto sign) sens
convSign :: TaxoGraphKind
-> MMiSSOntology -> Sign f e -> WithError MMiSSOntology
convSign KConcept o s =
case convSign KSubsort o s of
wOnto -> weither (const wOnto) (convPred s) wOnto
convSign KSubsort onto sign =
Set.fold addSor (hasValue onto) $ sortSet sign
-- Ausgehend von den Top-Sorten -- Rel.mostRight
where str = show
relMap = Rel.toMap $ Rel.intransKernel $ sortRel sign
addSor sort weOnto =
let sortStr = str sort
in weither (const weOnto)
(\ on -> insClass on sortStr
(maybe [] toStrL $
Map.lookup sort relMap))
weOnto
insClass o nm supL =
insertClass o nm nm supL (Just SubSort)
toStrL = Set.fold (\ s rs -> str s : rs) []
convPred :: Sign f e -> MMiSSOntology -> WithError MMiSSOntology
convPred s o =
-- first only binary preds; later also unary preds
Map.foldWithKey addPred (hasValue o) $ predMap s
where addPred pn tSet wOnto =
weither (const wOnto) insBinaryPred wOnto
where insBinaryPred on =
let binT = Set.filter ((==2) . length . predArgs) tSet
in if Set.null binT
then hasValue on
else Set.fold insType (insName on) binT
insName on = insertBaseRelation on (show pn) (show pn)
Nothing Nothing
insType t wOn =
weither (const wOn)
(\ ont ->
let src = (show (predArgs t !! 0))
tar = (show (predArgs t !! 1))
in insertRelationType ont (show pn)
src tar)
wOn
convSen :: WithError MMiSSOntology
-> Named (FORMULA f) -> WithError MMiSSOntology
convSen weOnto _nSen = weither (const weOnto) hasValue weOnto
-- implemented but not used by now
showOntClass :: String -> [String] -> String
showOntClass cln =
foldl (\ res sup -> res ++ ontClass sup) ""
where ontClass s = "\\Class{" ++ cln ++ "}{" ++ cln ++ "}{" ++ s ++ "}"
showRelationName :: String -> String
showRelationName rn = "\\RelationName{" ++ rn ++ "}{" ++ rn ++ "}"
showRelation :: String -> String -> String -> String
showRelation rn s t = "\\Relation{" ++ rn ++ "}{" ++ s ++ "}{" ++ t ++ "}{}"