Sublogic.hs revision f3a94a197960e548ecd6520bb768cb0d547457bb
{- |
Module : $Header$
Copyright : (c) Pascal Schmidt, Christian Maeder, and Uni Bremen 2002-2003
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : experimental
Portability : portable
This module provides the sublogic functions (as required by Logic.hs)
for CASL. The functions allow to compute the minimal sublogics needed
by a given element, to check whether an item is part of a given
sublogic, and to project an element into a given sublogic.
- implement 'pr_sign'
-}
module CASL.Sublogic ( -- * datatypes
CASL_Sublogics(..),
CASL_Formulas(..),
-- * functions for LatticeWithTop instance
top,
sublogics_max,
sublogics_min,
-- * functions for the creation of minimal sublogics
bottom,
need_sub,
need_part,
need_cons,
need_eq,
need_pred,
need_horn,
need_ghorn,
need_fol,
-- * functions for Logic instance
-- * sublogic to string conversion
sublogics_name,
-- * list of all sublogics
sublogics_all,
-- * checks if element is in given sublogic
in_basic_spec,
in_sentence,
in_symb_items,
in_symb_items_list,
in_symb_map_items,
in_symb_map_items_list,
in_sign,
in_morphism,
in_symbol,
-- * computes the sublogic of a given element
sl_basic_spec,
sl_sentence,
sl_symb_items,
sl_symb_map_items,
sl_sign,
sl_morphism,
sl_symbol,
-- * projects an element into a given sublogic
pr_basic_spec,
pr_symb_items,
pr_symb_map_items,
pr_sign,
pr_morphism,
pr_epsilon,
pr_symbol
) where
import Data.Maybe
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import qualified Common.Lib.Rel as Rel
import Common.Id
import Common.AS_Annotation
import CASL.AS_Basic_CASL
import CASL.Sign
import CASL.Morphism
------------------------------------------------------------------------------
-- | Datatypes for CASL sublogics
------------------------------------------------------------------------------
data CASL_Formulas = Atomic -- ^ atomic logic
| Horn -- ^ positive conditional logic
| GHorn -- ^ generalized positive conditional logic
| FOL -- ^ first-order logic
deriving (Show,Ord,Eq)
data CASL_Sublogics = CASL_SL
{ has_sub::Bool, -- ^ subsorting
has_part::Bool, -- ^ partiality
has_cons::Bool, -- ^ sort generation constraints
has_eq::Bool, -- ^ equality
has_pred::Bool, -- ^ predicates
which_logic::CASL_Formulas
} deriving (Show,Eq)
-----------------------------------------------------------------------------
-- Special sublogics elements
-----------------------------------------------------------------------------
-- top element
--
top :: CASL_Sublogics
top = (CASL_SL True True True True True FOL)
-- bottom element
--
bottom :: CASL_Sublogics
bottom = (CASL_SL False False False False False Atomic)
-- the following are used to add a needed feature to a given
-- sublogic via sublogics_max, i.e. (sublogics_max given needs_part)
-- will force partiality in addition to what features given already
-- has included
-- minimal sublogic with subsorting
--
need_sub :: CASL_Sublogics
need_sub = bottom { has_sub = True, which_logic = Horn }
-- minimal sublogic with partiality
--
need_part :: CASL_Sublogics
need_part = bottom { has_part = True }
-- minimal sublogic with sort generation constraints
--
need_cons :: CASL_Sublogics
need_cons = bottom { has_cons = True }
-- minimal sublogic with equality
--
need_eq :: CASL_Sublogics
need_eq = bottom { has_eq = True }
-- minimal sublogic with predicates
--
need_pred :: CASL_Sublogics
need_pred = bottom { has_pred = True }
need_horn :: CASL_Sublogics
need_horn = bottom { which_logic = Horn }
need_ghorn :: CASL_Sublogics
need_ghorn = bottom { which_logic = GHorn }
need_fol :: CASL_Sublogics
need_fol = bottom { which_logic = FOL }
-----------------------------------------------------------------------------
-- Functions to generate a list of all sublogics for CASL
-----------------------------------------------------------------------------
-- conversion from Int in [0..127] range to CASL_Sublogics
boolFromInt :: Int -> Bool
boolFromInt 0 = False
boolFromInt _ = True
formulasFromInt :: Int -> CASL_Formulas
formulasFromInt 0 = Atomic
formulasFromInt 1 = Horn
formulasFromInt 2 = GHorn
formulasFromInt _ = FOL
sublogicFromInt :: Int -> CASL_Sublogics
sublogicFromInt i =
let
divmod = (\x y -> (div x y,mod x y))
(f,fr) = divmod i 32
(e,er) = divmod fr 16
(d,dr) = divmod er 8
(c,cr) = divmod dr 4
(b,a) = divmod cr 2
in
CASL_SL (boolFromInt a) (boolFromInt b) (boolFromInt c) (boolFromInt d)
(boolFromInt e) (formulasFromInt f)
-- all elements
-- create a list of all CASL sublogics by generating all possible
-- feature combinations and then filtering illegal ones out
--
sublogics_all :: [CASL_Sublogics]
sublogics_all = filter (not . adjust_check) $ map sublogicFromInt [0..127]
------------------------------------------------------------------------------
-- Conversion functions (to String)
------------------------------------------------------------------------------
formulas_name :: Bool -> CASL_Formulas -> String
formulas_name True FOL = "FOL"
formulas_name False FOL = "FOAlg"
formulas_name True GHorn = "GHorn"
formulas_name False GHorn = "GCond"
formulas_name True Horn = "Horn"
formulas_name False Horn = "Cond"
formulas_name True Atomic = "Atom"
formulas_name False Atomic = "Eq"
sublogics_name :: CASL_Sublogics -> [String]
sublogics_name x = [ ( if (has_sub x) then "Sub" else "")
++ ( if (has_part x) then "P" else "")
++ ( if (has_cons x) then "C" else "")
++ ( formulas_name (has_pred x) (which_logic x) )
++ ( if (has_eq x) then "=" else "")]
------------------------------------------------------------------------------
-- min/join and max/meet functions
------------------------------------------------------------------------------
sublogics_max :: CASL_Sublogics -> CASL_Sublogics -> CASL_Sublogics
sublogics_max a b = CASL_SL (has_sub a || has_sub b)
(has_part a || has_part b)
(has_cons a || has_cons b)
(has_eq a || has_eq b)
(has_pred a || has_pred b)
(max (which_logic a) (which_logic b))
sublogics_min :: CASL_Sublogics -> CASL_Sublogics -> CASL_Sublogics
sublogics_min a b = CASL_SL (has_sub a && has_sub b)
(has_part a && has_part b)
(has_cons a && has_cons b)
(has_eq a && has_eq b)
(has_pred a && has_pred b)
(min (which_logic a) (which_logic b))
instance Ord CASL_Sublogics where
x <= y = sublogics_min x y == x
------------------------------------------------------------------------------
-- Helper functions
------------------------------------------------------------------------------
-- compute sublogics from a list of sublogics
--
comp_list :: [CASL_Sublogics] -> CASL_Sublogics
comp_list l = foldl sublogics_max bottom l
-- adjust illegal combination "subsorting with atomic logic"
--
adjust_logic :: CASL_Sublogics -> CASL_Sublogics
adjust_logic x = if (adjust_check x) then
x { which_logic = Horn }
else
x
-- check for illegal combination "subsorting with atomic logic"
--
adjust_check :: CASL_Sublogics -> Bool
adjust_check x = (has_sub x) && (which_logic x == Atomic)
-- map a function returning Maybe over a list of arguments
-- . a list of Pos is maintained by removing an element if the
-- function f returns Nothing on the corresponding element of
-- the argument list
-- . leftover elements in the Pos list after the argument
-- list is exhausted are appended at the end with Nothing
-- as a substitute for f's result
--
mapMaybePos :: [Pos] -> (a -> Maybe b) -> [a] -> [(Maybe b,Pos)]
mapMaybePos [] _ _ = []
mapMaybePos (p1:pl) f [] = (Nothing,p1):(mapMaybePos pl f [])
mapMaybePos (p1:pl) f (h:t) = let
res = f h
in
if (isJust res) then
(res,p1):(mapMaybePos pl f t)
else
mapMaybePos pl f t
-- map with partial function f on Maybe type
-- will remove elements from given Pos list for elements of [a]
-- where f returns Nothing
-- given number of elements from the beginning of [Pos] are always
-- kept
--
mapPos :: Int -> [Pos] -> (a -> Maybe b) -> [a] -> ([b],[Pos])
mapPos c p f l = let
(res,pos) = (\(x,y) -> (catMaybes x,y))
$ unzip $ mapMaybePos (drop c p) f l
in
(res,(take c p)++pos)
------------------------------------------------------------------------------
-- Functions to analyse formulae
------------------------------------------------------------------------------
{- ---------------------------------------------------------------------------
These functions are based on Till Mossakowski's paper "Sublanguages of
CASL", which is CoFI Note L-7. The functions implement an adaption of
the reduced grammar given there for formulae in a specific expression
logic by, checking whether a formula would match the productions from the
grammar. Which function checks for which nonterminal from the paper is
given as a comment before each function.
--------------------------------------------------------------------------- -}
sl_form_level :: (Bool,Bool) -> FORMULA f -> CASL_Sublogics
sl_form_level (isCompound,leftImp) phi =
case phi of
Quantification q _ f _ ->
if is_atomic_q q
then sl_form_level (isCompound,leftImp) f
else need_fol
Conjunction l _ -> comp_list $ map (sl_form_level (True,leftImp)) l
Disjunction _ _ -> need_fol
Implication l1 l2 _ _ -> if leftImp then need_fol else
comp_list [sl_form_level (True,True) l1,
sl_form_level (True,False) l2,
if isCompound
then need_ghorn
else need_horn]
Equivalence l1 l2 _ ->
if leftImp
then need_fol
else comp_list [sl_form_level (True,True) l1,
sl_form_level (True,True) l2,
need_ghorn]
Negation _ _ -> need_fol -- it won't get worse
True_atom _ -> bottom
False_atom _ -> need_fol
Predication _ _ _ -> bottom
Definedness _ _ -> bottom
Existl_equation _ _ _ -> bottom
Strong_equation _ _ _ -> if leftImp then need_fol else need_horn
Membership _ _ _ -> bottom
Sort_gen_ax _ _ -> bottom
_ -> error "CASL.Sublogic.sl_form_level: illegal FORMULA type"
-- QUANTIFIER
--
is_atomic_q :: QUANTIFIER -> Bool
is_atomic_q (Universal) = True
is_atomic_q _ = False
-- compute logic of a formula by checking all logics in turn
--
get_logic :: FORMULA f -> CASL_Sublogics
get_logic = sl_form_level (False,False)
-- for the formula inside a subsort-defn
--
get_logic_sd :: FORMULA f -> CASL_Sublogics
get_logic_sd f = sublogics_max need_horn $ sl_form_level (False,False) f
{- get_logic_sd f = if (is_horn_p_a f) then need_horn else
if (is_ghorn_prem f) then need_ghorn else
need_fol -}
------------------------------------------------------------------------------
-- Functions to compute minimal sublogic for a given element, these work
-- by recursing into all subelements
------------------------------------------------------------------------------
sl_basic_spec :: BASIC_SPEC b s f -> CASL_Sublogics
sl_basic_spec (Basic_spec l) = comp_list $ map sl_basic_items
$ map item l
sl_basic_items :: BASIC_ITEMS b s f -> CASL_Sublogics
sl_basic_items (Sig_items i) = sl_sig_items i
sl_basic_items (Free_datatype l _) = comp_list $ map sl_datatype_decl
$ map item l
sl_basic_items (Sort_gen l _) = sublogics_max need_cons
(comp_list $ map sl_sig_items
$ map item l)
sl_basic_items (Var_items l _) = comp_list $ map sl_var_decl l
sl_basic_items (Local_var_axioms d l _) = sublogics_max
(comp_list $ map sl_var_decl d)
(comp_list $ map sl_formula
$ map item l)
sl_basic_items (Axiom_items l _) = comp_list $ map sl_formula
$ map item l
sl_basic_items _ = error "CASL.Sublogic.sl_basic_items"
sl_sig_items :: SIG_ITEMS s f -> CASL_Sublogics
sl_sig_items (Sort_items l _) = comp_list $ map sl_sort_item $ map item l
sl_sig_items (Op_items l _) = comp_list $ map sl_op_item $ map item l
sl_sig_items (Pred_items l _) = comp_list $ map sl_pred_item $ map item l
sl_sig_items (Datatype_items l _) = comp_list $ map sl_datatype_decl
$ map item l
sl_sig_items _ = error "CASL.Sublogic.sl_sig_items"
-- Subsort_defn needs to compute the expression logic needed seperately
-- because the expressiveness allowed in the formula may be different
-- from more general formulae in the same expression logic
--
sl_sort_item :: SORT_ITEM f -> CASL_Sublogics
sl_sort_item (Subsort_decl _ _ _) = need_sub
sl_sort_item (Subsort_defn _ _ _ f _) = sublogics_max
(get_logic_sd $ item f)
(sublogics_max need_sub
(sl_formula $ item f))
sl_sort_item (Iso_decl _ _) = need_sub
sl_sort_item _ = bottom
sl_op_item :: OP_ITEM f -> CASL_Sublogics
sl_op_item (Op_decl _ t l _) = sublogics_max (sl_op_type t)
(comp_list $ map sl_op_attr l)
sl_op_item (Op_defn _ h t _) = sublogics_max (sl_op_head h)
(sl_term $ item t)
sl_op_attr :: OP_ATTR f -> CASL_Sublogics
sl_op_attr (Unit_op_attr t) = sl_term t
sl_op_attr _ = need_eq
sl_op_type :: OP_TYPE -> CASL_Sublogics
sl_op_type (Op_type Partial _ _ _) = need_part
sl_op_type _ = bottom
sl_op_head :: OP_HEAD -> CASL_Sublogics
sl_op_head (Op_head Partial _ _ _) = need_part
sl_op_head _ = bottom
sl_pred_item :: PRED_ITEM f -> CASL_Sublogics
sl_pred_item (Pred_decl _ _ _) = need_pred
sl_pred_item (Pred_defn _ _ f _) = sublogics_max need_pred
(sl_formula $ item f)
sl_datatype_decl :: DATATYPE_DECL -> CASL_Sublogics
sl_datatype_decl (Datatype_decl _ l _) = comp_list $ map sl_alternative
$ map item l
sl_alternative :: ALTERNATIVE -> CASL_Sublogics
sl_alternative (Alt_construct Total _ l _) = comp_list $ map sl_components l
sl_alternative (Alt_construct Partial _ _ _) = need_part
sl_alternative (Subsorts _ _) = need_sub
sl_components :: COMPONENTS -> CASL_Sublogics
sl_components (Cons_select Partial _ _ _) = need_part
sl_components _ = bottom
sl_var_decl :: VAR_DECL -> CASL_Sublogics
sl_var_decl _ = bottom
{- without subsorts casts are trivial and would not even require
need_part, but testing term_sort is not save for formulas in basic specs
that are only parsed (and resolved) but not enriched with sorts -}
sl_term :: TERM f -> CASL_Sublogics
-- the subterms may make it worse than "need_part"
sl_term (Cast t _ _) = sublogics_max need_part $ sl_term t
-- check here also for the formula_level!
sl_term (Conditional t f u _) = comp_list [sl_term t,sl_formula f,sl_term u]
sl_term (Sorted_term t _ _) = sl_term t
sl_term (Application _ l _) = comp_list $ map sl_term l
sl_term (Qual_var _ _ _) = bottom
sl_term _ = error "CASL.Sublogic.sl_term"
sl_formula :: FORMULA f -> CASL_Sublogics
sl_formula f = sublogics_max (get_logic f) (sl_form f)
sl_form :: FORMULA f -> CASL_Sublogics
sl_form (Quantification _ _ f _) = sl_form f
sl_form (Conjunction l _) = comp_list $ map sl_form l
sl_form (Disjunction l _) = comp_list $ map sl_form l
sl_form (Implication f g _ _) = sublogics_max (sl_form f) (sl_form g)
sl_form (Equivalence f g _) = sublogics_max (sl_form f) (sl_form g)
sl_form (Negation f _) = sl_form f
sl_form (True_atom _) = bottom
sl_form (False_atom _) = bottom
sl_form (Predication _ l _) = sublogics_max need_pred
(comp_list $ map sl_term l)
-- need_part is tested elsewhere (need_pred not required)
sl_form (Definedness t _) = sl_term t
sl_form (Existl_equation t u _) = comp_list [need_eq,sl_term t,sl_term u]
sl_form (Strong_equation t u _) = comp_list [need_eq,sl_term t,sl_term u]
-- need_sub is tested elsewhere (need_pred not required)
sl_form (Membership t _ _) = sl_term t
sl_form (Sort_gen_ax _ _) = need_cons
sl_form _ = error "CASL.Sublogic.sl_form"
sl_symb_items :: SYMB_ITEMS -> CASL_Sublogics
sl_symb_items (Symb_items k l _) = sublogics_max (sl_symb_kind k)
(comp_list $ map sl_symb l)
sl_symb_items_list :: SYMB_ITEMS_LIST -> CASL_Sublogics
sl_symb_items_list (Symb_items_list l _) = comp_list $ map sl_symb_items l
sl_symb_kind :: SYMB_KIND -> CASL_Sublogics
sl_symb_kind (Preds_kind) = need_pred
sl_symb_kind _ = bottom
sl_symb :: SYMB -> CASL_Sublogics
sl_symb (Symb_id _) = bottom
sl_symb (Qual_id _ t _) = sl_type t
sl_type :: TYPE -> CASL_Sublogics
sl_type (O_type t) = sl_op_type t
sl_type (P_type _) = need_pred
sl_type _ = bottom
sl_symb_map_items :: SYMB_MAP_ITEMS -> CASL_Sublogics
sl_symb_map_items (Symb_map_items k l _) = sublogics_max (sl_symb_kind k)
(comp_list $ map sl_symb_or_map l)
sl_symb_map_items_list :: SYMB_MAP_ITEMS_LIST -> CASL_Sublogics
sl_symb_map_items_list (Symb_map_items_list l _) =
comp_list $ map sl_symb_map_items l
sl_symb_or_map :: SYMB_OR_MAP -> CASL_Sublogics
sl_symb_or_map (Symb s) = sl_symb s
sl_symb_or_map (Symb_map s t _) = sublogics_max (sl_symb s) (sl_symb t)
-- the maps have no influence since all sorts,ops,preds in them
-- must also appear in the signatures, so any features needed by
-- them will be included by just checking the signatures
--
sl_sign :: Sign f e -> CASL_Sublogics
sl_sign s =
let subs = if Rel.null $ sortRel s then bottom else need_sub
preds = if Map.null $ predMap s then bottom else need_pred
partial = if any ( \ t -> opKind t == Partial) $ Set.toList
$ Set.unions $ Map.elems $ opMap s then need_part else bottom
in sublogics_max subs (sublogics_max preds partial)
sl_sentence :: FORMULA f -> CASL_Sublogics
sl_sentence = sl_formula
sl_morphism :: Morphism f e m -> CASL_Sublogics
sl_morphism m = sublogics_max (sl_sign $ msource m) (sl_sign $ mtarget m)
sl_symbol :: Symbol -> CASL_Sublogics
sl_symbol (Symbol _ t) = sl_symbtype t
sl_symbtype :: SymbType -> CASL_Sublogics
sl_symbtype (OpAsItemType t) = sl_optype t
sl_symbtype (PredAsItemType _) = need_pred
sl_symbtype _ = bottom
sl_optype :: OpType -> CASL_Sublogics
sl_optype k = sl_funkind $ opKind k
sl_funkind :: FunKind -> CASL_Sublogics
sl_funkind (Partial) = need_part
sl_funkind _ = bottom
------------------------------------------------------------------------------
-- comparison functions
------------------------------------------------------------------------------
-- negated implication
--
nimpl :: Bool -> Bool -> Bool
nimpl True _ = True
nimpl False False = True
nimpl False True = False
-- check if a "new" sublogic is contained in/equal to a given
-- sublogic
--
sl_in :: CASL_Sublogics -> CASL_Sublogics -> Bool
sl_in given new = (nimpl (has_sub given) (has_sub new)) &&
(nimpl (has_part given) (has_part new)) &&
(nimpl (has_cons given) (has_cons new)) &&
(nimpl (has_eq given) (has_eq new)) &&
(nimpl (has_pred given) (has_pred new)) &&
((which_logic given) >= (which_logic new))
in_x :: CASL_Sublogics -> a -> (a -> CASL_Sublogics) -> Bool
in_x l x f = sl_in l (f x)
in_basic_spec :: CASL_Sublogics -> BASIC_SPEC b s f -> Bool
in_basic_spec l x = in_x l x sl_basic_spec
in_sentence :: CASL_Sublogics -> FORMULA f -> Bool
in_sentence l x = in_x l x sl_sentence
in_symb_items :: CASL_Sublogics -> SYMB_ITEMS -> Bool
in_symb_items l x = in_x l x sl_symb_items
in_symb_map_items :: CASL_Sublogics -> SYMB_MAP_ITEMS -> Bool
in_symb_map_items l x = in_x l x sl_symb_map_items
in_symb_items_list :: CASL_Sublogics -> SYMB_ITEMS_LIST -> Bool
in_symb_items_list l x = in_x l x sl_symb_items_list
in_symb_map_items_list :: CASL_Sublogics -> SYMB_MAP_ITEMS_LIST -> Bool
in_symb_map_items_list l x = in_x l x sl_symb_map_items_list
in_sign :: CASL_Sublogics -> Sign f e -> Bool
in_sign l x = in_x l x sl_sign
in_morphism :: CASL_Sublogics -> Morphism f e m -> Bool
in_morphism l x = in_x l x sl_morphism
in_symbol :: CASL_Sublogics -> Symbol -> Bool
in_symbol l x = in_x l x sl_symbol
------------------------------------------------------------------------------
-- projection functions
------------------------------------------------------------------------------
-- process Annoted type like simple type, simply keep all annos
--
pr_annoted :: CASL_Sublogics -> (CASL_Sublogics -> a -> Maybe a)
-> Annoted a -> Maybe (Annoted a)
pr_annoted sl f a = let
res = f sl (item a)
in
if (isNothing res) then
Nothing
else
Just (a { item = fromJust res })
-- project annoted type, by-producing a [SORT]
-- used for projecting datatypes: sometimes it is necessary to
-- introduce a SORT_DEFN for a datatype that was erased
-- completely, for example by only having partial constructors
-- and partiality forbidden in the desired sublogic - the sort
-- name may however still be needed for formulas because it can
-- appear there like in (forall x,y:Datatype . x=x), a formula
-- that does not use partiality (does not use any constructor
-- or selector)
--
pr_annoted_dt :: CASL_Sublogics -> (CASL_Sublogics -> a -> (Maybe a,[SORT]))
-> Annoted a -> (Maybe (Annoted a),[SORT])
pr_annoted_dt sl f a = let
(res,lst) = f sl (item a)
in
if (isNothing res) then
(Nothing,lst)
else
(Just (a { item = fromJust res }),lst)
-- keep an element if its computed sublogic is in the given sublogic
--
pr_check :: CASL_Sublogics -> (a -> CASL_Sublogics) -> a -> Maybe a
pr_check l f e = if (in_x l e f) then (Just e) else Nothing
pr_formula :: CASL_Sublogics -> FORMULA f -> Maybe (FORMULA f)
pr_formula l f = pr_check l sl_formula f
-- make full Annoted Sig_items out of a SORT list
--
pr_make_sorts :: [SORT] -> Annoted (BASIC_ITEMS b s f)
pr_make_sorts s =
Annoted (Sig_items (Sort_items [Annoted (Sort_decl s [])[][][]][]))[][][]
-- when processing BASIC_SPEC, add a Sort_decl in front for sorts
-- defined by DATATYPE_DECLs that had to be removed completely,
-- otherwise formulas might be broken by the missing sorts, thus
-- breaking the projection
--
pr_basic_spec :: CASL_Sublogics -> BASIC_SPEC b s f -> BASIC_SPEC b s f
pr_basic_spec l (Basic_spec s) =
let
res = map (pr_annoted_dt (adjust_logic l) pr_basic_items) s
items = catMaybes $ map fst res
toAdd = concat $ map snd res
ret = if (toAdd==[]) then
items
else
(pr_make_sorts toAdd):items
in
Basic_spec ret
-- returns a non-empty list of [SORT] if datatypes had to be removed
-- completely
--
pr_basic_items :: CASL_Sublogics -> BASIC_ITEMS b s f
-> (Maybe (BASIC_ITEMS b s f), [SORT])
pr_basic_items l (Sig_items s) =
let
(res,lst) = pr_sig_items l s
in
if (isNothing res) then
(Nothing,lst)
else
(Just (Sig_items (fromJust res)),lst)
pr_basic_items l (Free_datatype d p) =
let
(res,pos) = mapPos 2 p (pr_annoted l pr_datatype_decl) d
lst = pr_lost_dt l (map item d)
in
if (null res) then
(Nothing,lst)
else
(Just (Free_datatype res pos),lst)
pr_basic_items l (Sort_gen s p) =
if (has_cons l) then
let
tmp = map (pr_annoted_dt l pr_sig_items) s
res = catMaybes $ map fst tmp
lst = concat $ map snd tmp
in
if (null res) then
(Nothing,lst)
else
(Just (Sort_gen res p),lst)
else
(Nothing,[])
pr_basic_items _ (Var_items v p) = (Just (Var_items v p),[])
pr_basic_items l (Local_var_axioms v f p) =
let
(res,pos) = mapPos (length v) p (pr_annoted l pr_formula) f
in
if (null res) then
(Nothing,[])
else
(Just (Local_var_axioms v res pos),[])
pr_basic_items l (Axiom_items f p) =
let
(res,pos) = mapPos 0 p (pr_annoted l pr_formula) f
in
if (null res) then
(Nothing,[])
else
(Just (Axiom_items res pos),[])
pr_basic_items _ _ = error "CASL.Sublogic.pr_basic_items"
pr_datatype_decl :: CASL_Sublogics -> DATATYPE_DECL -> Maybe DATATYPE_DECL
pr_datatype_decl l (Datatype_decl s a p) =
let
(res,pos) = mapPos 1 p (pr_annoted l pr_alternative) a
in
if (null res) then
Nothing
else
Just (Datatype_decl s res pos)
pr_alternative :: CASL_Sublogics -> ALTERNATIVE -> Maybe ALTERNATIVE
pr_alternative l (Alt_construct Total n c p) =
let
(res,pos) = mapPos 1 p (pr_components l) c
in
if (null res) then
Nothing
else
Just (Alt_construct Total n res pos)
pr_alternative l alt@(Alt_construct Partial _ _ _) =
if ((has_part l)==True) then
Just alt
else
Nothing
pr_alternative l (Subsorts s p) =
if ((has_sub l)==True) then
Just (Subsorts s p)
else
Nothing
pr_components :: CASL_Sublogics -> COMPONENTS -> Maybe COMPONENTS
pr_components l sel@(Cons_select Partial _ _ _) =
if ((has_part l)==True) then
Just sel
else
Nothing
pr_components _ x = Just x
-- takes a list of datatype declarations and checks whether a
-- whole declaration is invalid in the given sublogic - if this
-- is the case, the sort that would be declared by the type is
-- added to a list of SORT that is emitted
--
pr_lost_dt :: CASL_Sublogics -> [DATATYPE_DECL] -> [SORT]
pr_lost_dt _ [] = []
pr_lost_dt sl ((Datatype_decl s l p):t) =
let
res = pr_datatype_decl sl (Datatype_decl s l p)
in
if (isNothing res) then
s:(pr_lost_dt sl t)
else
pr_lost_dt sl t
pr_symbol :: CASL_Sublogics -> Symbol -> Maybe Symbol
pr_symbol l s = pr_check l sl_symbol s
-- returns a non-empty list of [SORT] if datatypes had to be removed
-- completely
--
pr_sig_items :: CASL_Sublogics -> SIG_ITEMS s f
-> (Maybe (SIG_ITEMS s f),[SORT])
pr_sig_items l (Sort_items s p) =
let
(res,pos) = mapPos 1 p (pr_annoted l pr_sort_item) s
in
if (null res) then
(Nothing,[])
else
(Just (Sort_items res pos),[])
pr_sig_items l (Op_items o p) =
let
(res,pos) = mapPos 1 p (pr_annoted l pr_op_item) o
in
if (null res) then
(Nothing,[])
else
(Just (Op_items res pos),[])
pr_sig_items l (Pred_items i p) =
if (has_pred l) then
(Just (Pred_items i p),[])
else
(Nothing,[])
pr_sig_items l (Datatype_items d p) =
let
(res,pos) = mapPos 1 p (pr_annoted l pr_datatype_decl) d
lst = pr_lost_dt l (map item d)
in
if (null res) then
(Nothing,lst)
else
(Just (Datatype_items res pos),lst)
pr_sig_items _ _ = error "CASL.Sublogic.pr_sig_items"
pr_op_item :: CASL_Sublogics -> OP_ITEM f -> Maybe (OP_ITEM f)
pr_op_item l i = pr_check l sl_op_item i
-- subsort declarations and definitions are reduced to simple
-- sort declarations if the sublogic disallows subsorting to
-- avoid loosing sorts in the projection
--
pr_sort_item ::
CASL_Sublogics -> SORT_ITEM f -> Maybe (SORT_ITEM f)
pr_sort_item _ (Sort_decl s p) = Just (Sort_decl s p)
pr_sort_item l (Subsort_decl sl s p) =
if (has_sub l) then
Just (Subsort_decl sl s p)
else
Just (Sort_decl (s:sl) [])
pr_sort_item l (Subsort_defn s1 v s2 f p) =
if (has_sub l) then
Just (Subsort_defn s1 v s2 f p)
else
Just (Sort_decl [s1] [])
pr_sort_item _ (Iso_decl s p) = Just (Iso_decl s p)
pr_symb_items :: CASL_Sublogics -> SYMB_ITEMS -> Maybe SYMB_ITEMS
pr_symb_items l1 (Symb_items k s p) =
let
l = adjust_logic l1
in
if (in_x l k sl_symb_kind) then
let
(res,pos) = mapPos 1 p (pr_symb l) s
in
if (null res) then
Nothing
else
Just (Symb_items k res pos)
else
Nothing
pr_symb_map_items :: CASL_Sublogics -> SYMB_MAP_ITEMS -> Maybe SYMB_MAP_ITEMS
pr_symb_map_items l1 (Symb_map_items k s p) =
let
l = adjust_logic l1
in
if (in_x l k sl_symb_kind) then
let
(res,pos) = mapPos 1 p (pr_symb_or_map l) s
in
if (null res) then
Nothing
else
Just (Symb_map_items k res pos)
else
Nothing
pr_symb_or_map :: CASL_Sublogics -> SYMB_OR_MAP -> Maybe SYMB_OR_MAP
pr_symb_or_map l (Symb s) =
let
res = pr_symb l s
in
if (isNothing res) then
Nothing
else
Just (Symb (fromJust res))
pr_symb_or_map l (Symb_map s t p) =
let
a = pr_symb l s
b = pr_symb l t
in
if ((isJust a) && (isJust b)) then
Just (Symb_map s t p)
else
Nothing
pr_symb :: CASL_Sublogics -> SYMB -> Maybe SYMB
pr_symb _ (Symb_id i) = Just (Symb_id i)
pr_symb l (Qual_id i t p) =
if (in_x l t sl_type) then
Just (Qual_id i t p)
else
Nothing
pr_sign :: CASL_Sublogics -> Sign f e -> Sign f e
pr_sign _sl s = s -- do something here
pr_morphism :: CASL_Sublogics -> Morphism f e m -> Morphism f e m
pr_morphism l1 m =
let
l = adjust_logic l1
in m { msource = pr_sign l $ msource m
, mtarget = pr_sign l $ mtarget m
, fun_map = pr_fun_map l $ fun_map m
, pred_map = pr_pred_map l $ pred_map m }
-- predicates only rely on the has_pred feature, so the map
-- can be kept or removed as a whole
--
pr_pred_map :: CASL_Sublogics -> Pred_map -> Pred_map
pr_pred_map l x = if (has_pred l) then x else Map.empty
pr_fun_map :: CASL_Sublogics -> Fun_map -> Fun_map
pr_fun_map l m = Map.filterWithKey (pr_fun_map_entry l) m
pr_fun_map_entry :: CASL_Sublogics -> (Id, OpType) -> (Id, FunKind) -> Bool
pr_fun_map_entry l (_,t) (_,b) =
if (has_part l) then True
else ((in_x l t sl_optype) && b == Partial)
-- compute a morphism that consists of the original signature
-- and the projected signature
--
pr_epsilon :: Ext f e m -> CASL_Sublogics -> Sign f e -> Morphism f e m
pr_epsilon extEm l1 s = let
l = adjust_logic l1
new = pr_sign l s
in
embedMorphism extEm new s