StaticAna.hs revision 58b671de3fe578346fef9642ffa3c5a0a0edb3cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
{- |
Module : $Header$
Copyright : (c) Christian Maeder and Uni Bremen 2002-2003
Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt
Maintainer : hets@tzi.de
Stability : provisional
Portability : portable
CASL signatures and static analysis for basic specifications
-}
module CASL.StaticAna where
import CASL.AS_Basic_CASL
import CASL.MixfixParser
import Common.Lib.State
import Common.PrettyPrint
import Common.PPUtils
import Common.Lib.Pretty
import CASL.Print_AS_Basic
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import qualified Common.Lib.Rel as Rel
import Common.Id
import Common.AS_Annotation
import Common.GlobalAnnotations
import Common.Named
import Common.Result
import Data.Maybe
data FunKind = Total | Partial deriving (Show, Eq, Ord)
-- constants have empty argument lists
data OpType = OpType {opKind :: FunKind, opArgs :: [SORT], opRes :: SORT}
deriving (Show, Eq, Ord)
data PredType = PredType {predArgs :: [SORT]} deriving (Show, Eq, Ord)
data Env = Env { sortSet :: Set.Set SORT
, sortRel :: Rel.Rel SORT
, sentences :: [Named FORMULA]
, envDiags :: [Diagnosis]
} deriving (Show, Eq)
emptyEnv :: Env
emptyEnv = Env { sortSet = Set.empty
, sortRel = Rel.empty
, opMap = Map.empty
, predMap = Map.empty
, varMap = Map.empty
, sentences = []
, envDiags = [] }
subsortsOf :: SORT -> Env -> Set.Set SORT
subsortsOf s e =
where addSubs sub supers =
if s `Set.member` supers
then Set.insert sub
else id
supersortsOf :: SORT -> Env -> Set.Set SORT
supersortsOf s e =
case Map.lookup s $ Rel.toMap $ sortRel e of
Nothing -> Set.empty
Just supers -> supers
addSort :: SORT -> State Env ()
addSort s =
do e <- get
let m = sortSet e
if Set.member s m then
addDiags [mkDiag Hint "redeclared sort" s]
else put e { sortSet = Set.insert s m }
checkSort :: SORT -> State Env ()
checkSort s =
do m <- gets sortSet
addDiags $ if Set.member s m then [] else
[mkDiag Error "unknown sort" s]
addSubsort :: SORT -> SORT -> State Env ()
addSubsort super sub =
do e <- get
mapM_ checkSort [super, sub]
put e { sortRel = Rel.insert sub super $ sortRel e }
addVars :: VAR_DECL -> State Env ()
addVars (Var_decl vs s _) = mapM_ (addVar s) vs
addVar :: SORT -> SIMPLE_ID -> State Env ()
addVar s v =
do e <- get
let m = varMap e
l = Map.findWithDefault Set.empty v m
if Set.member s l then
addDiags [mkDiag Hint "redeclared var" v]
else put e { varMap = Map.insert v (Set.insert s l) m }
checkPlaces :: [SORT] -> Id -> [Diagnosis]
checkPlaces args i =
if let n = placeCount i in n == 0 || n == length args then []
else [mkDiag Error "wrong number of places" i]
addOp :: OpType -> Id -> State Env ()
addOp ty i =
do mapM_ checkSort (opRes ty : opArgs ty)
e <- get
let m = opMap e
l = Map.findWithDefault Set.empty i m
check = addDiags $ checkPlaces (opArgs ty) i
store = do put e { opMap = Map.insert i (Set.insert ty l) m }
if Set.member ty l then
addDiags [mkDiag Hint "redeclared op" i]
else case opKind ty of
Partial -> if Set.member ty {opKind = Total} l then
addDiags [mkDiag Warning "partially redeclared" i]
else store >> check
Total -> do store
if Set.member ty {opKind = Partial} l then
addDiags [mkDiag Hint "redeclared as total" i]
else check
addPred :: PredType -> Id -> State Env ()
addPred ty i =
do mapM_ checkSort $ predArgs ty
e <- get
let m = predMap e
l = Map.findWithDefault Set.empty i m
if Set.member ty l then
addDiags [mkDiag Hint "redeclared pred" i]
else do put e { predMap = Map.insert i (Set.insert ty l) m }
addDiags $ checkPlaces (predArgs ty) i
allOpIds :: Env -> Set.Set Id
allOpIds = Set.fromDistinctAscList . Map.keys . opMap
formulaIds :: Env -> Set.Set Id
formulaIds e =
Set.fromDistinctAscList (map simpleIdToId $ Map.keys $ varMap e)
`Set.union` allOpIds e
allPredIds :: Env -> Set.Set Id
allPredIds = Set.fromDistinctAscList . Map.keys . predMap
addDiags :: [Diagnosis] -> State Env ()
addDiags ds =
do e <- get
put e { envDiags = ds ++ envDiags e }
addSentences :: [Named FORMULA] -> State Env ()
addSentences ds =
do e <- get
put e { sentences = ds ++ sentences e }
-- * traversing all data types of the abstract syntax
ana_BASIC_SPEC :: GlobalAnnos -> BASIC_SPEC -> State Env BASIC_SPEC
ana_BASIC_SPEC ga (Basic_spec al) = fmap Basic_spec $
mapAnM (ana_BASIC_ITEMS ga) al
-- looseness of a datatype
data GenKind = Free | Generated | Loose deriving (Show, Eq, Ord)
ana_BASIC_ITEMS :: GlobalAnnos -> BASIC_ITEMS -> State Env BASIC_ITEMS
ana_BASIC_ITEMS ga bi =
case bi of
Sig_items sis -> fmap Sig_items $ ana_SIG_ITEMS ga Loose sis
Free_datatype al _ ->
do let sorts = map (( \ (Datatype_decl s _ _) -> s) . item) al
mapM_ addSort sorts
mapAnM (ana_DATATYPE_DECL Free) al
return bi
Sort_gen al ps ->
do ul <- mapAnM (ana_SIG_ITEMS ga Generated) al
return $ Sort_gen ul ps
Var_items il _ ->
do mapM_ addVars il
return bi
Local_var_axioms il afs ps ->
do e <- get -- save
mapM_ addVars il
ops <- gets formulaIds
put e -- restore
preds <- gets allPredIds
let rfs = map (resolveFormula ga ops preds . item) afs
ds = concatMap diags rfs
arfs = zipWith ( \ a m -> case maybeResult m of
Nothing -> Nothing
Just f -> Just a { item = f }) afs rfs
ufs = catMaybes arfs
fufs = map ( \ a -> a { item = Quantification Universal il
(item a) ps } ) ufs
sens = map ( \ a -> NamedSen (getRLabel a) $ item a) fufs
addDiags ds
addSentences sens
return $ Local_var_axioms il ufs ps
Axiom_items afs ps ->
do ops <- gets formulaIds
preds <- gets allPredIds
let rfs = map (resolveFormula ga ops preds . item) afs
ds = concatMap diags rfs
arfs = zipWith ( \ a m -> case maybeResult m of
Nothing -> Nothing
Just f -> Just a { item = f }) afs rfs
ufs = catMaybes arfs
sens = map ( \ a -> NamedSen (getRLabel a) $ item a) ufs
addDiags ds
addSentences sens
return $ Axiom_items ufs ps
ana_SIG_ITEMS :: GlobalAnnos -> GenKind -> SIG_ITEMS -> State Env SIG_ITEMS
ana_SIG_ITEMS ga gk si =
case si of
Sort_items al ps ->
do ul <- mapAnM (ana_SORT_ITEM ga) al
return $ Sort_items ul ps
Op_items al ps ->
do ul <- mapAnM (ana_OP_ITEM ga) al
return $ Op_items ul ps
Pred_items al ps ->
do ul <- mapAnM (ana_PRED_ITEM ga) al
return $ Pred_items ul ps
Datatype_items al _ ->
do let sorts = map (( \ (Datatype_decl s _ _) -> s) . item) al
mapM_ addSort sorts
mapAnM (ana_DATATYPE_DECL gk) al
return si
ana_SORT_ITEM :: GlobalAnnos -> SORT_ITEM -> State Env SORT_ITEM
ana_SORT_ITEM ga si =
case si of
Sort_decl il _ ->
do mapM_ addSort il
return si
Subsort_decl il i _ ->
do mapM_ addSort (i:il)
mapM_ (addSubsort i) il
return si
Subsort_defn sub v super af ps ->
do addSort sub
ops <- gets allOpIds
preds <- gets allPredIds
let Result ds mf = resolveFormula ga
(Set.insert (simpleIdToId v) ops) preds $ item af
addDiags ds
addSubsort super sub
return $ case mf of
Nothing -> Subsort_decl [sub] super ps
Just f -> Subsort_defn sub v super af { item = f } ps
Iso_decl il _ ->
do mapM_ addSort il
mapM_ ( \ i -> mapM_ (addSubsort i) il) il
return si
toOpType :: OP_TYPE -> OpType
toOpType (Total_op_type args r _) = OpType Total args r
toOpType (Partial_op_type args r _) = OpType Partial args r
ana_OP_ITEM :: GlobalAnnos -> OP_ITEM -> State Env OP_ITEM
ana_OP_ITEM ga oi =
case oi of
Op_decl ops ty il ps ->
do mapM_ (addOp $ toOpType ty) ops
ul <- mapM (ana_OP_ATTR ga) il
return $ Op_decl ops ty (catMaybes ul) ps
Op_defn i par at ps ->
do let ty = headToType par
addOp (toOpType ty) i
ops <- gets allOpIds
preds <- gets allPredIds
let vars = headToVars par
allOps = foldr ( \ v s -> Set.insert (simpleIdToId v) s)
ops vars
Result ds mt = resolveMixfix ga allOps preds False $ item at
addDiags ds
return $ case mt of
Nothing -> Op_decl [i] ty [] ps
Just t -> Op_defn i par at { item = t } ps
where
headToType :: OP_HEAD -> OP_TYPE
headToType (Total_op_head args r ps) =
Total_op_type (sortsOfArgs args) r ps
headToType (Partial_op_head args r ps) =
Partial_op_type (sortsOfArgs args) r ps
headToVars :: OP_HEAD -> [VAR]
headToVars h =
let as = case h of
Total_op_head args _ _ -> args
Partial_op_head args _ _ -> args
in concatMap ( \ (Arg_decl v _ _) -> v) as
sortsOfArgs :: [ARG_DECL] -> [SORT]
sortsOfArgs = concatMap ( \ (Arg_decl l s _) -> map (const s) l)
ana_OP_ATTR :: GlobalAnnos -> OP_ATTR -> State Env (Maybe OP_ATTR)
ana_OP_ATTR ga oa =
case oa of
Unit_op_attr t ->
do ops <- gets allOpIds
preds <- gets allPredIds
let Result ds mt = resolveMixfix ga ops preds False t
addDiags ds
return $ fmap Unit_op_attr mt
_ -> return $ Just oa
toPredType :: PRED_TYPE -> PredType
toPredType (Pred_type args _) = PredType args
ana_PRED_ITEM :: GlobalAnnos -> PRED_ITEM -> State Env PRED_ITEM
ana_PRED_ITEM ga p =
case p of
Pred_decl preds ty _ ->
do mapM (addPred $ toPredType ty) preds
return p
Pred_defn i par at ps ->
do let ty = predHeadToType par
addPred (toPredType ty) i
ops <- gets allOpIds
preds <- gets allPredIds
let vars = predHeadToVars par
allOps = foldr ( \ v s -> Set.insert (simpleIdToId v) s)
ops vars
Result ds mt = resolveFormula ga allOps preds $ item at
addDiags ds
return $ case mt of
Nothing -> Pred_decl [i] ty ps
Just t -> Pred_defn i par at { item = t } ps
where
predHeadToType :: PRED_HEAD -> PRED_TYPE
predHeadToType (Pred_head args ps) =
Pred_type (sortsOfArgs args) ps
predHeadToVars :: PRED_HEAD -> [VAR]
predHeadToVars (Pred_head args _) =
concatMap ( \ (Arg_decl v _ _) -> v) args
-- full function type of a selector (result sort is component sort)
data Component = Component { compId :: Id, compType :: OpType }
deriving (Show)
instance Eq Component where
Component i1 t1 == Component i2 t2 =
(i1, opArgs t1, opRes t1) == (i2, opArgs t2, opRes t2)
instance Ord Component where
Component i1 t1 <= Component i2 t2 =
(i1, opArgs t1, opRes t1) <= (i2, opArgs t2, opRes t2)
instance PrettyPrint Component where
printText0 ga (Component i ty) =
printText0 ga i <+> colon <> printText0 ga ty
instance PosItem Component where
get_pos = Just . posOfId . compId
-- full function type of constructor (result sort is the data type)
data Alternative = Construct Id OpType [Component]
deriving (Show, Eq)
ana_DATATYPE_DECL :: GenKind -> DATATYPE_DECL -> State Env ()
ana_DATATYPE_DECL _gk (Datatype_decl s al _) =
-- GenKind currently unused
do ul <- mapM (ana_ALTERNATIVE s . item) al
let constr = catMaybes ul
if null constr then return ()
else do addDiags $ checkUniqueness $ map fst constr
let totalSels = Set.unions $ map snd constr
wrongConstr = filter ((totalSels /=) . snd) constr
addDiags $ map ( \ (c, _) -> mkDiag Error
("total selectors '" ++ showSepList (showString ",")
showPretty (Set.toList totalSels)
"'\n\tmust appear in alternative") c) wrongConstr
ana_ALTERNATIVE :: SORT -> ALTERNATIVE
-> State Env (Maybe (Component, Set.Set Component))
ana_ALTERNATIVE s c =
case c of
Subsorts ss _ ->
do mapM_ (addSubsort s) ss
return Nothing
_ -> do let (part, i, il) = case c of
Total_construct a l _ -> (Total, a, l)
Partial_construct a l _ -> (Partial, a, l)
_ -> error "ana_ALTERNATIVE"
ty = OpType part (concatMap compSort il) s
addOp ty i
ul <- mapM (ana_COMPONENTS s) il
let ts = concatMap fst ul
addDiags $ checkUniqueness (ts ++ concatMap snd ul)
return $ Just (Component i ty, Set.fromList ts)
where compSort :: COMPONENTS -> [SORT]
compSort (Total_select l cs _) = map (const cs) l
compSort (Partial_select l cs _) = map (const cs) l
compSort (Sort cs) = [cs]
ana_COMPONENTS :: SORT -> COMPONENTS -> State Env ([Component], [Component])
ana_COMPONENTS s c =
case c of
Sort _ -> return ([], [])
_ -> do let (part, is, cs) = case c of
Total_select as bs _ -> (Total, as, bs)
Partial_select as bs _ -> (Partial, as, bs)
_ -> error "ana_COMPONENTS"
ty = OpType part [s] cs
ts = map ( \ i -> Component i ty) is
mapM_ (addOp ty) is
return $ case part of
Total -> (ts, [])
Partial -> ([], ts)
-- wrap it all up for a logic
type Sign = Env -- ignoring vars, sentences and diags
type Sentence = FORMULA
emptySign :: Sign
emptySign = emptyEnv
basicAnalysis :: (BASIC_SPEC, Sign, GlobalAnnos)
-> Result (BASIC_SPEC,Sign,Sign,[Named Sentence])
basicAnalysis (bs, inSig, ga) =
let (newBs, accSig) = runState (ana_BASIC_SPEC ga bs) inSig
ds = envDiags accSig
sents = sentences accSig
cleanSig = accSig { envDiags = [], sentences = [], varMap = Map.empty }
diff = diffSig cleanSig inSig
remPartOpsS s = s { opMap = remPartOpsM $ opMap s }
in Result ds $ Just ( newBs
, remPartOpsS diff
, remPartOpsS cleanSig
, sents )
diffSig :: Sign -> Sign -> Sign
diffSig a b =
a { sortSet = sortSet a `Set.difference` sortSet b
, sortRel = fromSet $ Set.difference
(toSet $ sortRel a) $ toSet $ sortRel b
, opMap = opMap a `diffMapSet` opMap b
, predMap = predMap a `diffMapSet` predMap b
}
diffMapSet =
Map.differenceWith ( \ s t -> let d = Set.difference s t in
if Set.isEmpty d then Nothing
else Just d )
toSet = Set.fromList . Rel.toList
fromSet = Rel.fromList . Set.toList
addSig :: Sign -> Sign -> Sign
addSig a b =
a { sortSet = sortSet a `Set.union` sortSet b
, sortRel = fromSet $ Set.union
(toSet $ sortRel a) $ toSet $ sortRel b
, opMap = remPartOpsM $ Map.unionWith Set.union (opMap a) $ opMap b
, predMap = Map.unionWith Set.union (predMap a) $ predMap b
}
isEmptySig :: Sign -> Bool
isEmptySig s =
Set.isEmpty (sortSet s) &&
Rel.isEmpty (sortRel s) &&
Map.isEmpty (opMap s) &&
Map.isEmpty (predMap s)
isSubSig :: Sign -> Sign -> Bool
isSubSig sub super = isEmptySig $ diffSig sub super
{ opMap = addPartOpsM $ opMap super }
partOps s = Set.fromDistinctAscList $ map ( \ t -> t { opKind = Partial } )
$ Set.toList $ Set.filter ((==Total) . opKind) s
remPartOps s = s Set.\\ partOps s
remPartOpsM = Map.map remPartOps
addPartOps s = Set.union s $ partOps s
addPartOpsM = Map.map addPartOps
toOP_TYPE :: OpType -> OP_TYPE
toOP_TYPE OpType { opArgs = args, opRes = res, opKind = k } =
(case k of
Total -> Total_op_type
Partial -> Partial_op_type) args res []
toPRED_TYPE :: PredType -> PRED_TYPE
toPRED_TYPE PredType { predArgs = args } = Pred_type args []
instance PrettyPrint OpType where
printText0 ga ot = printText0 ga $ toOP_TYPE ot
instance PrettyPrint PredType where
printText0 ga pt = printText0 ga $ toPRED_TYPE pt
instance PrettyPrint Sign where
printText0 ga s =
ptext "sorts" <+> commaT_text ga (Set.toList $ sortSet s)
$$
(if Rel.isEmpty (sortRel s) then empty
else ptext "sorts" <+>
(vcat $ map printRel $ Map.toList $ Rel.toMap $ sortRel s))
$$
vcat (map (\ (i, t) ->
ptext "op" <+>
printText0 ga i <+> colon <>
printText0 ga t)
$ concatMap (\ (o, ts) ->
map ( \ ty -> (o, ty) ) $ Set.toList ts)
$ Map.toList $ opMap s)
$$
vcat (map (\ (i, t) ->
ptext "pred" <+>
printText0 ga i <+> colon <+>
printText0 ga (toPRED_TYPE t))
$ concatMap (\ (o, ts) ->
map ( \ ty -> (o, ty) ) $ Set.toList ts)
$ Map.toList $ predMap s)
where printRel (s,subsorts) =
printText0 ga s <+> ptext "<" <+> printSet ga subsorts