StaticAna.hs revision 330b955a293fdc64e9145a159b2f2faec1f8011e
{- |
Module : $Header$
Copyright : (c) Christian Maeder and Uni Bremen 2002-2003
Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt
Maintainer : hets@tzi.de
Stability : provisional
Portability : portable
CASL static analysis for basic specifications
Follows Chaps. III:2 and III:3 of the CASL Reference Manual.
-}
module CASL.StaticAna where
import CASL.AS_Basic_CASL
import CASL.Sign
import CASL.MixfixParser
import CASL.Overload
import Common.Lib.State
import Common.PrettyPrint
import Common.Lib.Pretty
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import Common.Id
import Common.AS_Annotation
import Common.GlobalAnnotations
import Common.Result
import Data.Maybe
import Data.List
checkPlaces :: [SORT] -> Id -> [Diagnosis]
checkPlaces args i =
if let n = placeCount i in n == 0 || n == length args then []
else [mkDiag Error "wrong number of places" i]
addOp :: OpType -> Id -> State (Sign f e) ()
addOp ty i =
do mapM_ checkSort (opRes ty : opArgs ty)
e <- get
let m = opMap e
l = Map.findWithDefault Set.empty i m
check = addDiags $ checkPlaces (opArgs ty) i
store = do put e { opMap = Map.insert i (Set.insert ty l) m }
if Set.member ty l then
addDiags [mkDiag Hint "redeclared op" i]
else case opKind ty of
Partial -> if Set.member ty {opKind = Total} l then
addDiags [mkDiag Warning "partially redeclared" i]
else store >> check
Total -> do store
if Set.member ty {opKind = Partial} l then
addDiags [mkDiag Hint "redeclared as total" i]
else check
addAssocOp :: OpType -> Id -> State (Sign f e) ()
addAssocOp ty i = do
e <- get
let m = assocOps e
pty = ty { opKind = Partial } -- ignore FunKind
l = Map.findWithDefault Set.empty i m
put e { assocOps = Map.insert i (Set.insert pty l) m }
addPred :: PredType -> Id -> State (Sign f e) ()
addPred ty i =
do mapM_ checkSort $ predArgs ty
e <- get
let m = predMap e
l = Map.findWithDefault Set.empty i m
if Set.member ty l then
addDiags [mkDiag Hint "redeclared pred" i]
else do put e { predMap = Map.insert i (Set.insert ty l) m }
addDiags $ checkPlaces (predArgs ty) i
allOpIds :: State (Sign f e) (Set.Set Id)
allOpIds = do
e <- get
return $ Set.fromDistinctAscList $ Map.keys $ opMap e
addAssocs :: GlobalAnnos -> State (Sign f e) GlobalAnnos
addAssocs ga = do
e <- get
return ga { assoc_annos =
foldr ( \ i m -> case Map.lookup i m of
Nothing -> Map.insert i ALeft m
_ -> m ) (assoc_annos ga) (Map.keys $ assocOps e) }
formulaIds :: State (Sign f e) (Set.Set Id)
formulaIds = do
e <- get
ops <- allOpIds
return (Set.fromDistinctAscList (map simpleIdToId $ Map.keys $ varMap e)
`Set.union` ops)
allPredIds :: State (Sign f e) (Set.Set Id)
allPredIds = do
e <- get
return $ Set.fromDistinctAscList $ Map.keys $ predMap e
addSentences :: [Named (FORMULA f)] -> State (Sign f e) ()
addSentences ds =
do e <- get
put e { sentences = ds ++ sentences e }
-- * traversing all data types of the abstract syntax
ana_BASIC_SPEC :: (b -> e -> e) -> (s -> e -> e) ->
GlobalAnnos -> BASIC_SPEC b s f -> State (Sign f e) (BASIC_SPEC b s f)
ana_BASIC_SPEC ab as ga (Basic_spec al) = fmap Basic_spec $
mapAnM (ana_BASIC_ITEMS ab as ga) al
-- looseness of a datatype
data GenKind = Free | Generated | Loose deriving (Show, Eq, Ord)
mkForall :: [VAR_DECL] -> FORMULA f -> [Pos] -> FORMULA f
mkForall vl f ps = if null vl then f else
Quantification Universal vl f ps
ana_BASIC_ITEMS :: (b -> e -> e) -> (s -> e -> e) ->
GlobalAnnos -> (BASIC_ITEMS b s f)
-> State (Sign f e) (BASIC_ITEMS b s f)
ana_BASIC_ITEMS ab as ga bi =
case bi of
Sig_items sis -> fmap Sig_items $ ana_SIG_ITEMS as ga Loose sis
Free_datatype al ps ->
do let sorts = map (( \ (Datatype_decl s _ _) -> s) . item) al
mapM_ addSort sorts
mapAnM (ana_DATATYPE_DECL Free) al
toSortGenAx ps $ getDataGenSig al
closeSubsortRel
return bi
Sort_gen al ps ->
do (gs,ul) <- ana_Generated as ga al
toSortGenAx ps (Set.unions $ map fst gs, Set.unions $ map snd gs)
return $ Sort_gen ul ps
Var_items il _ ->
do mapM_ addVars il
return bi
Local_var_axioms il afs ps ->
do e <- get -- save
mapM_ addVars il
ops <- formulaIds
put e -- restore
preds <- allPredIds
newGa <- addAssocs ga
let rfs = map (resolveFormula newGa ops preds . item) afs
ds = concatMap diags rfs
arfs = zipWith ( \ a m -> case maybeResult m of
Nothing -> Nothing
Just f -> Just a { item = f }) afs rfs
ufs = catMaybes arfs
fufs = map ( \ a -> a { item = mkForall il
(item a) ps } ) ufs
sens = map ( \ a -> NamedSen (getRLabel a) $ item a) fufs
addDiags ds
addSentences sens
return $ Local_var_axioms il ufs ps
Axiom_items afs ps ->
do ops <- formulaIds
preds <- allPredIds
newGa <- addAssocs ga
let rfs = map (resolveFormula newGa ops preds . item) afs
ds = concatMap diags rfs
arfs = zipWith ( \ a m -> case maybeResult m of
Nothing -> Nothing
Just f -> Just a { item = f }) afs rfs
ufs = catMaybes arfs
sens = map ( \ a -> NamedSen (getRLabel a) $ item a) ufs
addDiags ds
addSentences sens
return $ Axiom_items ufs ps
Ext_BASIC_ITEMS b -> do
sig <- get
put sig { extendedInfo = ab b $ extendedInfo sig }
return bi
toSortGenAx :: [Pos] -> (Set.Set Id, Set.Set Component) -> State (Sign f e) ()
toSortGenAx ps (sorts, ops) = do
let sortList = Set.toList sorts
opSyms = map ( \ c -> Qual_op_name (compId c)
(toOP_TYPE $ compType c) []) $ Set.toList ops
resType _ (Op_name _) = False
resType s (Qual_op_name _ t _) = res_OP_TYPE t ==s
getIndex s = maybe (-1) id $ findIndex (==s) sortList
addIndices (Op_name _) =
error "CASL/StaticAna: Internal error in function addIndices"
addIndices os@(Qual_op_name _ t _) =
(os,map getIndex $ args_OP_TYPE t)
collectOps s =
Constraint s (map addIndices $ filter (resType s) opSyms) s
constrs = map collectOps sortList
f = Sort_gen_ax constrs
if null sortList then
addDiags[Diag Error "missing generated sort" (headPos ps)]
else return ()
addSentences [NamedSen ("ga_generated_" ++
showSepList (showString "_") showId sortList "") f]
ana_SIG_ITEMS :: (s -> e -> e) -> GlobalAnnos -> GenKind -> SIG_ITEMS b s f
-> State (Sign f e) (SIG_ITEMS b s f)
ana_SIG_ITEMS as ga gk si =
case si of
Sort_items al ps ->
do ul <- mapM (ana_SORT_ITEM ga) al
closeSubsortRel
return $ Sort_items ul ps
Op_items al ps ->
do ul <- mapM (ana_OP_ITEM ga) al
return $ Op_items ul ps
Pred_items al ps ->
do ul <- mapM (ana_PRED_ITEM ga) al
return $ Pred_items ul ps
Datatype_items al _ ->
do let sorts = map (( \ (Datatype_decl s _ _) -> s) . item) al
mapM_ addSort sorts
mapAnM (ana_DATATYPE_DECL gk) al
closeSubsortRel
return si
Ext_SIG_ITEMS s ->
do sig <- get
put sig { extendedInfo = as s $ extendedInfo sig }
return si
-- helper
ana_Generated :: (s -> e -> e) -> GlobalAnnos -> [Annoted (SIG_ITEMS b s f)]
-> State (Sign f e)
([(Set.Set Id, Set.Set Component)],[Annoted (SIG_ITEMS b s f)])
ana_Generated as ga al = do
ul <- mapAnM (ana_SIG_ITEMS as ga Generated) al
return (map (getGenSig . item) ul,ul)
getGenSig :: SIG_ITEMS b s f -> (Set.Set Id, Set.Set Component)
getGenSig si = case si of
Sort_items al _ -> (Set.unions (map (getSorts . item) al), Set.empty)
Op_items al _ -> (Set.empty, Set.unions (map (getOps . item) al))
Datatype_items dl _ -> getDataGenSig dl
_ -> (Set.empty, Set.empty)
getDataGenSig :: [Annoted DATATYPE_DECL] -> (Set.Set Id, Set.Set Component)
getDataGenSig dl =
let alts = map (( \ (Datatype_decl s al _) -> (s, al)) . item) dl
sorts = map fst alts
cs = concatMap ( \ (s, al) -> map (( \ a ->
let (i, ty, _) = getConsType s a
in Component i ty))
$ filter ( \ a ->
case a of
Subsorts _ _ -> False
_ -> True)
$ map item al) alts
in (Set.fromList sorts, Set.fromList cs)
getSorts :: SORT_ITEM f -> Set.Set Id
getSorts si =
case si of
Sort_decl il _ -> Set.fromList il
Subsort_decl il i _ -> Set.fromList (i:il)
Subsort_defn sub _ _ _ _ -> Set.single sub
Iso_decl il _ -> Set.fromList il
getOps :: OP_ITEM f -> Set.Set Component
getOps oi = case oi of
Op_decl is ty _ _ ->
Set.fromList $ map ( \ i -> Component i $ toOpType ty) is
Op_defn i par _ _ -> Set.single $ Component i $ toOpType $ headToType par
ana_SORT_ITEM :: GlobalAnnos -> Annoted (SORT_ITEM f)
-> State (Sign f e) (Annoted (SORT_ITEM f))
ana_SORT_ITEM ga asi =
case item asi of
Sort_decl il _ ->
do mapM_ addSort il
return asi
Subsort_decl il i _ ->
do mapM_ addSort (i:il)
mapM_ (addSubsort i) il
return asi
Subsort_defn sub v super af ps ->
do ops <- allOpIds
preds <- allPredIds
newGa <- addAssocs ga
let Result ds mf = resolveFormula newGa
(Set.insert (simpleIdToId v) ops) preds $ item af
lb = getRLabel af
lab = if null lb then getRLabel asi else lb
addDiags ds
addSort sub
addSubsort super sub
case mf of
Nothing -> return asi { item = Subsort_decl [sub] super ps}
Just f -> do
let p = [posOfId sub]
pv = [tokPos v]
addSentences[NamedSen lab $
mkForall [Var_decl [v] super pv]
(Equivalence
(Membership (Qual_var v super pv) sub p)
f p) p]
return asi { item = Subsort_defn sub v super af { item = f } ps}
Iso_decl il _ ->
do mapM_ addSort il
mapM_ ( \ i -> mapM_ (addSubsort i) il) il
return asi
ana_OP_ITEM :: GlobalAnnos -> Annoted (OP_ITEM f)
-> State (Sign f e) (Annoted (OP_ITEM f))
ana_OP_ITEM ga aoi =
case item aoi of
Op_decl ops ty il ps ->
do let oty = toOpType ty
mapM_ (addOp oty) ops
ul <- mapM (ana_OP_ATTR ga oty ops) il
if null $ filter ( \ i -> case i of
Assoc_op_attr -> True
_ -> False) il
then return ()
else mapM_ (addAssocOp oty) ops
return aoi {item = Op_decl ops ty (catMaybes ul) ps}
Op_defn i par at ps ->
do let ty = headToType par
lb = getRLabel at
lab = if null lb then getRLabel aoi else lb
args = case par of
Total_op_head as _ _ -> as
Partial_op_head as _ _ -> as
vs = map (\ (Arg_decl v s qs) -> (Var_decl v s qs)) args
arg = concatMap ( \ (Var_decl v s qs) ->
map ( \ j -> Qual_var j s qs) v) vs
addOp (toOpType ty) i
ops <- allOpIds
preds <- allPredIds
newGa <- addAssocs ga
let vars = concatMap ( \ (Arg_decl v _ _) -> v) args
allOps = foldr ( \ v s -> Set.insert (simpleIdToId v) s)
ops vars
Result ds mt = resolveMixfix newGa allOps preds False $ item at
addDiags ds
case mt of
Nothing -> return aoi { item = Op_decl [i] ty [] ps }
Just t -> do let p = [posOfId i]
addSentences [NamedSen lab $
mkForall vs
(Strong_equation
(Application (Qual_op_name i ty p) arg ps)
t p) ps]
return aoi {item = Op_defn i par at { item = t } ps }
headToType :: OP_HEAD -> OP_TYPE
headToType (Total_op_head args r ps) =
Total_op_type (sortsOfArgs args) r ps
headToType (Partial_op_head args r ps) =
Partial_op_type (sortsOfArgs args) r ps
sortsOfArgs :: [ARG_DECL] -> [SORT]
sortsOfArgs = concatMap ( \ (Arg_decl l s _) -> map (const s) l)
ana_OP_ATTR :: GlobalAnnos -> OpType -> [Id] -> (OP_ATTR f)
-> State (Sign f e) (Maybe (OP_ATTR f))
ana_OP_ATTR ga ty ois oa =
let sty = toOP_TYPE ty
rty = opRes ty
q = [posOfId rty] in
case oa of
Unit_op_attr t ->
do ops <- allOpIds
preds <- allPredIds
newGa <- addAssocs ga
let Result ds mt = resolveMixfix newGa ops preds False t
addDiags ds
case mt of
Nothing -> return Nothing
Just e -> do
addSentences $ map (makeUnit True e ty) ois
addSentences $ map (makeUnit False e ty) ois
return $ Just $ Unit_op_attr e
Assoc_op_attr -> do
let ns = map mkSimpleId ["x", "y", "z"]
vs = map ( \ v -> Var_decl [v] rty q) ns
[v1, v2, v3] = map ( \ v -> Qual_var v rty q) ns
makeAssoc i = let p = [posOfId i]
qi = Qual_op_name i sty p in
NamedSen ("ga_assoc_" ++ showId i "") $
mkForall vs
(Strong_equation
(Application qi [v1, Application qi [v2, v3] p] p)
(Application qi [Application qi [v1, v2] p, v3] p) p) p
addSentences $ map makeAssoc ois
return $ Just oa
Comm_op_attr -> do
let ns = map mkSimpleId ["x", "y"]
atys = opArgs ty
vs = zipWith ( \ v t -> Var_decl [v] t (map posOfId atys) ) ns atys
args = map toQualVar vs
makeComm i = let p = [posOfId i]
qi = Qual_op_name i sty p in
NamedSen ("ga_comm_" ++ showId i "") $
mkForall vs
(Strong_equation
(Application qi args p)
(Application qi (reverse args) p) p) p
case atys of
[_,_] -> addSentences $ map makeComm ois
_ -> addDiags [Diag Error "expecting two arguments for commutativity"
$ posOfId rty]
return $ Just oa
Idem_op_attr -> do
let v = mkSimpleId "x"
vd = Var_decl [v] rty q
qv = toQualVar vd
makeIdem i = let p = [posOfId i] in
NamedSen ("ga_idem_" ++ showId i "") $
mkForall [vd]
(Strong_equation
(Application (Qual_op_name i sty p) [qv, qv] p)
qv p) p
addSentences $ map makeIdem ois
return $ Just oa
makeUnit :: Bool -> TERM f -> OpType -> Id -> Named (FORMULA f)
makeUnit b t ty i =
let lab = "ga_" ++ (if b then "right" else "left") ++ "_unit_"
++ showId i ""
v = mkSimpleId "x"
vty = opRes ty
q = [posOfId vty]
p = [posOfId i]
qv = Qual_var v vty q
args = [qv, t]
rargs = if b then args else reverse args
in NamedSen lab $ mkForall [Var_decl [v] vty q]
(Strong_equation
(Application (Qual_op_name i (toOP_TYPE ty) p) rargs p)
qv p) p
ana_PRED_ITEM :: GlobalAnnos -> Annoted (PRED_ITEM f)
-> State (Sign f e) (Annoted (PRED_ITEM f))
ana_PRED_ITEM ga ap =
case item ap of
Pred_decl preds ty _ ->
do mapM (addPred $ toPredType ty) preds
return ap
Pred_defn i par at ps ->
do let Pred_head args rs = par
lb = getRLabel at
lab = if null lb then getRLabel ap else lb
ty = Pred_type (sortsOfArgs args) rs
vs = map (\ (Arg_decl v s qs) -> (Var_decl v s qs)) args
arg = concatMap ( \ (Var_decl v s qs) ->
map ( \ j -> Qual_var j s qs) v) vs
addPred (toPredType ty) i
ops <- allOpIds
preds <- allPredIds
newGa <- addAssocs ga
let vars = concatMap ( \ (Arg_decl v _ _) -> v) args
allOps = foldr ( \ v s -> Set.insert (simpleIdToId v) s)
ops vars
Result ds mt = resolveFormula newGa allOps preds $ item at
addDiags ds
case mt of
Nothing -> return ap {item = Pred_decl [i] ty ps}
Just t -> do
let p = [posOfId i]
addSentences [NamedSen lab $
mkForall vs
(Equivalence (Predication (Qual_pred_name i ty p)
arg p) t p) p]
return ap {item = Pred_defn i par at { item = t } ps}
-- full function type of a selector (result sort is component sort)
data Component = Component { compId :: Id, compType :: OpType }
deriving (Show)
instance Eq Component where
Component i1 t1 == Component i2 t2 =
(i1, opArgs t1, opRes t1) == (i2, opArgs t2, opRes t2)
instance Ord Component where
Component i1 t1 <= Component i2 t2 =
(i1, opArgs t1, opRes t1) <= (i2, opArgs t2, opRes t2)
instance PrettyPrint Component where
printText0 ga (Component i ty) =
printText0 ga i <+> colon <> printText0 ga ty
instance PosItem Component where
get_pos = Just . posOfId . compId
-- | return list of constructors
ana_DATATYPE_DECL :: GenKind -> DATATYPE_DECL -> State (Sign f e) [Component]
ana_DATATYPE_DECL gk (Datatype_decl s al _) =
do ul <- mapM (ana_ALTERNATIVE s . item) al
let constr = catMaybes ul
cs = map fst constr
if null constr then return ()
else do addDiags $ checkUniqueness cs
let totalSels = Set.unions $ map snd constr
wrongConstr = filter ((totalSels /=) . snd) constr
addDiags $ map ( \ (c, _) -> mkDiag Error
("total selectors '" ++ showSepList (showString ",")
showPretty (Set.toList totalSels)
"'\n\tmust appear in alternative") c) wrongConstr
case gk of
Free -> do
let allts = map item al
(alts, subs) = partition ( \ a -> case a of
Subsorts _ _ -> False
_ -> True) allts
sbs = concatMap ( \ (Subsorts ss _) -> ss) subs
comps = map (getConsType s) alts
ttrips = map (( \ (a, vs, t, ses) -> (a, vs, t, catSels ses))
. selForms1 "X" ) comps
sels = concatMap ( \ (_, _, _, ses) -> ses) ttrips
addSentences $ map makeInjective
$ filter ( \ (_, _, ces) -> not $ null ces)
comps
addSentences $ concatMap ( \ as -> map (makeDisjToSort as) sbs)
comps
addSentences $ makeDisjoint comps
addSentences $ catMaybes $ concatMap
( \ ses ->
map (makeUndefForm ses) ttrips) sels
_ -> return ()
return cs
makeDisjToSort :: (Id, OpType, [COMPONENTS]) -> SORT -> Named (FORMULA f)
makeDisjToSort a s =
let (c, v, t, _) = selForms1 "X" a
p = [posOfId s] in
NamedSen ("ga_disjoint_" ++ showId c "_sort_" ++ showId s "") $
mkForall v (Negation (Membership t s p) p) p
makeInjective :: (Id, OpType, [COMPONENTS]) -> Named (FORMULA f)
makeInjective a =
let (c, v1, t1, _) = selForms1 "X" a
(_, v2, t2, _) = selForms1 "Y" a
p = [posOfId c]
in NamedSen ("ga_injective_" ++ showId c "") $
mkForall (v1 ++ v2)
(Equivalence (Strong_equation t1 t2 p)
(let ces = zipWith ( \ w1 w2 -> Strong_equation
(toQualVar w1) (toQualVar w2) p) v1 v2
in if isSingle ces then head ces else Conjunction ces p)
p) p
makeDisjoint :: [(Id, OpType, [COMPONENTS])] -> [Named (FORMULA f)]
makeDisjoint [] = []
makeDisjoint (a:as) = map (makeDisj a) as ++ makeDisjoint as
makeDisj :: (Id, OpType, [COMPONENTS])
-> (Id, OpType, [COMPONENTS])
-> Named (FORMULA f)
makeDisj a1 a2 =
let (c1, v1, t1, _) = selForms1 "X" a1
(c2, v2, t2, _) = selForms1 "Y" a2
p = [posOfId c1, posOfId c2]
in NamedSen ("ga_disjoint_" ++ showId c1 "_" ++ showId c2 "") $
mkForall (v1 ++ v2)
(Negation (Strong_equation t1 t2 p) p) p
catSels :: [(Maybe Id, OpType)] -> [(Id, OpType)]
catSels = map ( \ (m, t) -> (fromJust m, t)) .
filter ( \ (m, _) -> isJust m)
makeUndefForm :: (Id, OpType) -> (Id, [VAR_DECL], TERM f, [(Id, OpType)])
-> Maybe (Named (FORMULA f))
makeUndefForm (s, ty) (i, vs, t, sels) =
let p = [posOfId s] in
if any ( \ (se, ts) -> s == se && opRes ts == opRes ty ) sels
then Nothing else
Just $ NamedSen ("ga_selector_undef_" ++ showId s "_"
++ showId i "") $
mkForall vs
(Negation
(Definedness
(Application (Qual_op_name s (toOP_TYPE ty) p) [t] p)
p) p) p
getConsType :: SORT -> ALTERNATIVE -> (Id, OpType, [COMPONENTS])
getConsType s c =
let (part, i, il) = case c of
Subsorts _ _ -> error "getConsType"
Total_construct a l _ -> (Total, a, l)
Partial_construct a l _ -> (Partial, a, l)
in (i, OpType part (concatMap
(map (opRes . snd) . getCompType s) il) s, il)
getCompType :: SORT -> COMPONENTS -> [(Maybe Id, OpType)]
getCompType s (Total_select l cs _) =
map (\ i -> (Just i, OpType Total [s] cs)) l
getCompType s (Partial_select l cs _) =
map (\ i -> (Just i, OpType Partial [s] cs)) l
getCompType s (Sort cs) = [(Nothing, OpType Partial [s] cs)]
genSelVars :: String -> Int -> [(Maybe Id, OpType)] -> [VAR_DECL]
genSelVars _ _ [] = []
genSelVars str n ((_, ty):rs) =
Var_decl [mkSelVar str n] (opRes ty) [] : genSelVars str (n+1) rs
mkSelVar :: String -> Int -> Token
mkSelVar str n = mkSimpleId (str ++ show n)
makeSelForms :: Int -> (Id, [VAR_DECL], TERM f, [(Maybe Id, OpType)])
-> [Named (FORMULA f)]
makeSelForms _ (_, _, _, []) = []
makeSelForms n (i, vs, t, (mi, ty):rs) =
(case mi of
Nothing -> []
Just j -> let p = [posOfId j]
rty = opRes ty
q = [posOfId rty] in
[NamedSen ("ga_selector_" ++ showId j "")
$ mkForall vs
(Strong_equation
(Application (Qual_op_name j (toOP_TYPE ty) p) [t] p)
(Qual_var (mkSelVar "X" n) rty q) p) p]
) ++ makeSelForms (n+1) (i, vs, t, rs)
selForms1 :: String -> (Id, OpType, [COMPONENTS])
-> (Id, [VAR_DECL], TERM f, [(Maybe Id, OpType)])
selForms1 str (i, ty, il) =
let cs = concatMap (getCompType $ opRes ty) il
vs = genSelVars str 1 cs
in (i, vs, Application (Qual_op_name i (toOP_TYPE ty) [])
(map toQualVar vs) [], cs)
toQualVar :: VAR_DECL -> TERM f
toQualVar (Var_decl v s ps) =
if isSingle v then Qual_var (head v) s ps else error "toQualVar"
selForms :: (Id, OpType, [COMPONENTS]) -> [Named (FORMULA f)]
selForms = makeSelForms 1 . selForms1 "X"
-- | return the constructor and the set of total selectors
ana_ALTERNATIVE :: SORT -> ALTERNATIVE
-> State (Sign f e) (Maybe (Component, Set.Set Component))
ana_ALTERNATIVE s c =
case c of
Subsorts ss _ ->
do mapM_ (addSubsort s) ss
return Nothing
_ -> do let cons@(i, ty, il) = getConsType s c
addOp ty i
ul <- mapM (ana_COMPONENTS s) il
let ts = concatMap fst ul
addDiags $ checkUniqueness (ts ++ concatMap snd ul)
addSentences $ selForms cons
return $ Just (Component i ty, Set.fromList ts)
-- | return total and partial selectors
ana_COMPONENTS :: SORT -> COMPONENTS
-> State (Sign f e) ([Component], [Component])
ana_COMPONENTS s c = do
let cs = getCompType s c
sels <- mapM ( \ (mi, ty) ->
case mi of
Nothing -> return Nothing
Just i -> do addOp ty i
return $ Just $ Component i ty) cs
return $ partition ((==Total) . opKind . compType) $ catMaybes sels
-- wrap it all up for a logic
basicAnalysis :: PrettyPrint f => (b -> e -> e)
-> (s -> e -> e) -> (f -> Result f)
->(BASIC_SPEC b s f, Sign f e, GlobalAnnos)
-> Result (BASIC_SPEC b s f, Sign f e, Sign f e, [Named (FORMULA f)])
basicAnalysis ab as af (bs, inSig, ga) = do
let (newBs, accSig) = runState (ana_BASIC_SPEC ab as ga bs) inSig
ds = reverse $ envDiags accSig
sents = reverse $ sentences accSig
cleanSig = accSig { envDiags = [], sentences = [], varMap = Map.empty }
diff = diffSig cleanSig inSig
remPartOpsS s = s { opMap = remPartOpsM $ opMap s }
checked_sents <- overloadResolution af accSig sents
Result ds (Just ()) -- insert diags
return ( newBs
, remPartOpsS diff
, remPartOpsS cleanSig
, reverse checked_sents )