StaticAna.hs revision 021d7137df04ec1834911d99d90243a092841ced
{- |
Module : $Header$
Description : CASL static analysis for basic specifications
Copyright : (c) Christian Maeder and Uni Bremen 2002-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
CASL static analysis for basic specifications
Follows Chaps. III:2 and III:3 of the CASL Reference Manual.
The static analysis takes an abstract syntax tree of a basic specification
and outputs a signature and a set of formulas, while checking that
- all sorts used in operation and predicate declarations have been declared
- all sorts, operation and predicate symbols used in formulas have
been declared
- formulas type-check
The formulas are returned with fully-qualified variables, operation
and predicate symbols.
The static analysis functions are parameterized with functions for
treating CASL extensions, that is, additional basic items, signature
items and formulas.
-}
module CASL.StaticAna where
import CASL.AS_Basic_CASL
import CASL.Sign
import CASL.MixfixParser
import CASL.Overload
import CASL.Quantification
import CASL.Utils
import Common.Lib.State
import Common.Doc
import Common.DocUtils
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Common.Lib.Rel as Rel
import Common.Id
import Common.Keywords
import Common.AS_Annotation
import Common.GlobalAnnotations
import Common.Result
import Data.Maybe
import Data.List
import Control.Exception (assert)
checkPlaces :: [SORT] -> Id -> [Diagnosis]
checkPlaces args i =
if let n = placeCount i in n == 0 || n == length args then []
else [mkDiag Error "wrong number of places" i]
checkWithVars :: String -> Map.Map SIMPLE_ID a -> Id -> [Diagnosis]
checkWithVars s m i@(Id ts _ _) = if isSimpleId i then
case Map.lookup (head ts) m of
Nothing -> []
Just _ -> alsoWarning s varS i
else []
addOp :: Annoted a -> OpType -> Id -> State (Sign f e) ()
addOp a ty i =
do checkSorts (opRes ty : opArgs ty)
e <- get
let m = opMap e
l = Map.findWithDefault Set.empty i m
check = addDiags $ checkPlaces (opArgs ty) i
++ checkWithOtherMap opS predS (predMap e) i
++ checkWithVars opS (varMap e) i
++ checkNamePrefix i
store = do put e { opMap = addOpTo i ty m }
if Set.member ty l then
addDiags [mkDiag Hint "redeclared op" i]
else case opKind ty of
Partial -> if Set.member ty {opKind = Total} l then
addDiags [mkDiag Warning "partially redeclared" i]
else store >> check
Total -> do store
if Set.member ty {opKind = Partial} l then
addDiags [mkDiag Hint "redeclared as total" i]
else check
addAnnoSet a $ Symbol i $ OpAsItemType ty
addAssocOp :: OpType -> Id -> State (Sign f e) ()
addAssocOp ty i = do
e <- get
put e { assocOps = addOpTo i ty $ assocOps e
, globAnnos = updAssocMap (addAssocId i) $ globAnnos e
}
updateExtInfo :: (e -> Result e) -> State (Sign f e) ()
updateExtInfo upd = do
s <- get
let re = upd $ extendedInfo s
case maybeResult re of
Nothing -> return ()
Just e -> put s { extendedInfo = e }
addDiags $ diags re
addPred :: Annoted a -> PredType -> Id -> State (Sign f e) ()
addPred a ty i =
do checkSorts $ predArgs ty
e <- get
let m = predMap e
l = Map.findWithDefault Set.empty i m
if Set.member ty l then
addDiags [mkDiag Hint "redeclared pred" i]
else do put e { predMap = Map.insert i (Set.insert ty l) m }
addDiags $ checkPlaces (predArgs ty) i
++ checkWithOtherMap predS opS (opMap e) i
++ checkWithVars predS (varMap e) i
++ checkNamePrefix i
addAnnoSet a $ Symbol i $ PredAsItemType ty
allOpIds :: Sign f e -> Set.Set Id
allOpIds = Map.keysSet . opMap
addAssocs :: Sign f e -> GlobalAnnos -> GlobalAnnos
addAssocs e = updAssocMap (\ m -> foldr addAssocId m $ Map.keys $ assocOps e)
updAssocMap :: (AssocMap -> AssocMap) -> GlobalAnnos -> GlobalAnnos
updAssocMap f ga = ga { assoc_annos = f $ assoc_annos ga }
addAssocId :: Id -> AssocMap -> AssocMap
addAssocId i m = case Map.lookup i m of
Nothing -> Map.insert i ALeft m
_ -> m
formulaIds :: Sign f e -> Set.Set Id
formulaIds e = let ops = allOpIds e in
Set.fromDistinctAscList (map simpleIdToId $ Map.keys $ varMap e)
`Set.union` ops
allPredIds :: Sign f e -> Set.Set Id
allPredIds = Map.keysSet . predMap
addSentences :: [Named (FORMULA f)] -> State (Sign f e) ()
addSentences ds =
do e <- get
put e { sentences = reverse ds ++ sentences e }
-- * traversing all data types of the abstract syntax
ana_BASIC_SPEC :: Pretty f => Min f e
-> Ana b b s f e -> Ana s b s f e -> Mix b s f e
-> BASIC_SPEC b s f -> State (Sign f e) (BASIC_SPEC b s f)
ana_BASIC_SPEC mef ab anas mix (Basic_spec al) = fmap Basic_spec $
mapAnM (ana_BASIC_ITEMS mef ab anas mix) al
-- looseness of a datatype
data GenKind = Free | Generated | Loose deriving (Show, Eq, Ord)
mkForall :: [VAR_DECL] -> FORMULA f -> Range -> FORMULA f
mkForall vl f ps = if null vl then f else
Quantification Universal vl f ps
unionGenAx :: [GenAx] -> GenAx
unionGenAx = foldr ( \ (s1, r1, f1) (s2, r2, f2) ->
(Set.union s1 s2,
Rel.union r1 r2,
Set.union f1 f2)) emptyGenAx
ana_BASIC_ITEMS :: Pretty f => Min f e -> Ana b b s f e -> Ana s b s f e
-> Mix b s f e -> BASIC_ITEMS b s f
-> State (Sign f e) (BASIC_ITEMS b s f)
ana_BASIC_ITEMS mef ab anas mix bi =
case bi of
Sig_items sis -> fmap Sig_items $
ana_SIG_ITEMS mef anas mix Loose sis
Free_datatype al ps ->
do mapM_ (\ i -> case item i of
Datatype_decl s _ _ -> addSort i s) al
mapAnM (ana_DATATYPE_DECL Free) al
toSortGenAx ps True $ getDataGenSig al
closeSubsortRel
return bi
Sort_gen al ps ->
do (gs,ul) <- ana_Generated mef anas mix al
toSortGenAx ps False $ unionGenAx gs
return $ Sort_gen ul ps
Var_items il _ ->
do mapM_ addVars il
return bi
Local_var_axioms il afs ps ->
do e <- get -- save
mapM_ addVars il
vds <- gets envDiags
sign <- get
put e { envDiags = vds } -- restore with shadowing warnings
let (es, resFs, anaFs) = foldr ( \ f (dss, ress, ranas) ->
let Result ds m = anaForm mef mix sign $ item f
in case m of
Nothing -> (ds ++ dss, ress, ranas)
Just (resF, anaF) ->
(ds ++ dss, f {item = resF} : ress,
f {item = anaF} : ranas))
([], [], []) afs
fufs = map (mapAn (\ f -> let
vs = map ( \ (v, s) ->
Var_decl [v] s ps)
$ Set.toList $ freeVars f
in stripQuant $ mkForall (vs ++ il) f ps))
anaFs
sens = map makeNamedSen fufs
addDiags es
addSentences sens
return $ Local_var_axioms il resFs ps
Axiom_items afs ps ->
do sign <- get
let (es, resFs, anaFs) = foldr ( \ f (dss, ress, ranas) ->
let Result ds m = anaForm mef mix
sign $ item f
in case m of
Nothing -> (ds ++ dss, ress, ranas)
Just (resF, anaF) ->
(ds ++ dss, f {item = resF} : ress,
f {item = anaF} : ranas))
([], [], []) afs
fufs = map (mapAn (\ f -> let
vs = map ( \ (v, s) ->
Var_decl [v] s ps)
$ Set.toList $ freeVars f
in stripQuant $ mkForall vs f ps)) anaFs
sens = map makeNamedSen fufs
addDiags es
addSentences sens
return $ Axiom_items resFs ps
Ext_BASIC_ITEMS b -> fmap Ext_BASIC_ITEMS $ ab mix b
mapAn :: (a -> b) -> Annoted a -> Annoted b
mapAn f an = replaceAnnoted (f $ item an) an
emptyGenAx :: GenAx
toSortGenAx :: Range -> Bool -> GenAx -> State (Sign f e) ()
toSortGenAx ps isFree (sorts, rel, ops) = do
let sortList = Set.toList sorts
opSyms = map ( \ c -> let ide = compId c in Qual_op_name ide
(toOP_TYPE $ compType c) $ posOfId ide) $ Set.toList ops
injSyms = map ( \ (s, t) -> let p = posOfId s in
Qual_op_name (mkUniqueInjName s t)
(Op_type Total [s] t p) p) $ Rel.toList
$ Rel.irreflex rel
resType _ (Op_name _) = False
resType s (Qual_op_name _ t _) = res_OP_TYPE t ==s
getIndex s = maybe (-1) id $ findIndex (==s) sortList
addIndices (Op_name _) =
error "CASL/StaticAna: Internal error in function addIndices"
addIndices os@(Qual_op_name _ t _) =
(os,map getIndex $ args_OP_TYPE t)
collectOps s =
Constraint s (map addIndices $ filter (resType s)
(opSyms ++ injSyms)) s
constrs = map collectOps sortList
f = Sort_gen_ax constrs isFree
if null sortList then
addDiags[Diag Error "missing generated sort" ps]
else return ()
addSentences [makeNamed ("ga_generated_" ++
showSepList (showString "_") showId sortList "") f]
ana_SIG_ITEMS :: Pretty f => Min f e -> Ana s b s f e -> Mix b s f e
-> GenKind -> SIG_ITEMS s f -> State (Sign f e) (SIG_ITEMS s f)
ana_SIG_ITEMS mef anas mix gk si =
case si of
Sort_items al ps ->
do ul <- mapM (ana_SORT_ITEM mef mix) al
closeSubsortRel
return $ Sort_items ul ps
Op_items al ps ->
do ul <- mapM (ana_OP_ITEM mef mix) al
return $ Op_items ul ps
Pred_items al ps ->
do ul <- mapM (ana_PRED_ITEM mef mix) al
return $ Pred_items ul ps
Datatype_items al _ ->
do mapM_ (\ i -> case item i of
Datatype_decl s _ _ -> addSort i s) al
mapAnM (ana_DATATYPE_DECL gk) al
closeSubsortRel
return si
Ext_SIG_ITEMS s -> fmap Ext_SIG_ITEMS $ anas mix s
-- helper
ana_Generated :: Pretty f => Min f e -> Ana s b s f e -> Mix b s f e
-> [Annoted (SIG_ITEMS s f)]
-> State (Sign f e) ([GenAx], [Annoted (SIG_ITEMS s f)])
ana_Generated mef anas mix al = do
ul <- mapAnM (ana_SIG_ITEMS mef anas mix Generated) al
return (map (getGenSig . item) ul, ul)
getGenSig :: SIG_ITEMS s f -> GenAx
getGenSig si = case si of
Sort_items al _ -> unionGenAx $ map (getGenSorts . item) al
Set.unions (map (getOps . item) al))
Datatype_items dl _ -> getDataGenSig dl
_ -> emptyGenAx
isConsAlt :: ALTERNATIVE -> Bool
isConsAlt a = case a of
Subsorts _ _ -> False
_ -> True
getDataGenSig :: [Annoted DATATYPE_DECL] -> GenAx
getDataGenSig dl =
let alts = concatMap (( \ (Datatype_decl s al _) ->
map ( \ a -> (s, item a)) al) . item) dl
sorts = map fst alts
(realAlts, subs) = partition (isConsAlt . snd) alts
cs = map ( \ (s, a) ->
let (i, ty, _) = getConsType s a
in Component i ty) realAlts
rel = foldr ( \ (t, a) r ->
foldr ( \ s ->
Rel.insert s t)
r $ getAltSubsorts a)
Rel.empty subs
in (Set.fromList sorts, rel, Set.fromList cs)
getGenSorts :: SORT_ITEM f -> GenAx
getGenSorts si =
let (sorts, rel) = case si of
Sort_decl il _ -> (Set.fromList il, Rel.empty)
Subsort_decl il i _ -> (Set.fromList (i:il)
, foldr (flip Rel.insert i) Rel.empty il)
Subsort_defn sub _ super _ _ -> (Set.singleton sub
, Rel.insert sub super Rel.empty)
Iso_decl il _ -> (Set.fromList il
, foldr ( \ s r -> foldr ( \ t ->
Rel.insert s t) r il) Rel.empty il)
in (sorts, rel, Set.empty)
getOps :: OP_ITEM f -> Set.Set Component
getOps oi = case oi of
Op_decl is ty _ _ ->
Set.fromList $ map ( \ i -> Component i $ toOpType ty) is
Op_defn i par _ _ ->
Set.singleton $ Component i $ toOpType $ headToType par
ana_SORT_ITEM :: Pretty f => Min f e -> Mix b s f e
-> Annoted (SORT_ITEM f)
-> State (Sign f e) (Annoted (SORT_ITEM f))
ana_SORT_ITEM mef mix asi =
case item asi of
Sort_decl il _ ->
do mapM_ (addSort asi) il
return asi
Subsort_decl il i _ ->
do mapM_ (addSort asi) (i:il)
mapM_ (addSubsort i) il
return asi
Subsort_defn sub v super af ps ->
do e <- get -- save
put e { varMap = Map.empty }
addVars (Var_decl [v] super ps)
sign <- get
put e -- restore
let Result ds mf = anaForm mef mix sign $ item af
lb = getRLabel af
lab = if null lb then getRLabel asi else lb
addDiags ds
addSort asi sub
addSubsort super sub
case mf of
Nothing -> return asi { item = Subsort_decl [sub] super ps}
Just (resF, anaF) -> do
let p = posOfId sub
pv = tokPos v
addSentences[(makeNamed lab $
mkForall [Var_decl [v] super pv]
(Equivalence
(Membership (Qual_var v super pv) sub p)
anaF p) p) {
isAxiom = notImplied af }]
return asi { item = Subsort_defn sub v super
af { item = resF } ps}
Iso_decl il _ ->
do mapM_ (addSort asi) il
case il of
[] -> return ()
_ : tl -> mapM_ (uncurry $ addSubsortOrIso False)
$ zip tl il
return asi
ana_OP_ITEM :: Pretty f => Min f e -> Mix b s f e -> Annoted (OP_ITEM f)
-> State (Sign f e) (Annoted (OP_ITEM f))
ana_OP_ITEM mef mix aoi =
case item aoi of
Op_decl ops ty il ps ->
do let oty = toOpType ty
ni = notImplied aoi
mapM_ (addOp aoi oty) ops
ul <- mapM (ana_OP_ATTR mef mix oty ni ops) il
if any ( \ a -> case a of
Assoc_op_attr -> True
_ -> False) il then do
mapM_ (addAssocOp oty) ops
if any ( \ a -> case a of
Comm_op_attr -> True
_ -> False) il then
addSentences $ map (addLeftComm oty ni) ops
else return ()
else return ()
return aoi {item = Op_decl ops ty (catMaybes ul) ps}
Op_defn i ohd at ps ->
do let ty = headToType ohd
lb = getRLabel at
lab = if null lb then getRLabel aoi else lb
args = case ohd of
Op_head _ as _ _ -> as
vs = map (\ (Arg_decl v s qs) -> (Var_decl v s qs)) args
arg = concatMap ( \ (Var_decl v s qs) ->
map ( \ j -> Qual_var j s qs) v) vs
addOp aoi (toOpType ty) i
e <- get -- save
put e { varMap = Map.empty }
mapM_ addVars vs
sign <- get
put e -- restore
let Result ds mt = anaTerm mef mix sign
(res_OP_TYPE ty) ps $ item at
addDiags ds
case mt of
Nothing -> return aoi { item = Op_decl [i] ty [] ps }
Just (resT, anaT) -> do
let p = posOfId i
addSentences [(makeNamed lab $ mkForall vs
(Strong_equation
(Application (Qual_op_name i ty p) arg ps)
anaT p) ps) {
isAxiom = notImplied at, isDef = True }]
return aoi {item = Op_defn i ohd at { item = resT } ps }
headToType :: OP_HEAD -> OP_TYPE
headToType (Op_head k args r ps) = Op_type k (sortsOfArgs args) r ps
sortsOfArgs :: [ARG_DECL] -> [SORT]
sortsOfArgs = concatMap ( \ (Arg_decl l s _) -> map (const s) l)
-- see Isabelle/doc/ref.pdf 10.6 Permutative rewrite rules (p. 137)
addLeftComm :: OpType -> Bool -> Id -> Named (FORMULA f)
addLeftComm ty ni i =
let sty = toOP_TYPE ty
rty = opRes ty
q = posOfId rty
ns = map mkSimpleId ["x", "y", "z"]
vs = map ( \ v -> Var_decl [v] rty q) ns
[v1, v2, v3] = map ( \ v -> Qual_var v rty q) ns
p = posOfId i
qi = Qual_op_name i sty p
in (makeNamed ("ga_left_comm_" ++ showId i "") $
mkForall vs
(Strong_equation
(Application qi [v1, Application qi [v2, v3] p] p)
(Application qi [v2, Application qi [v1, v3] p] p) p) p)
{ isAxiom = ni }
ana_OP_ATTR :: Pretty f => Min f e -> Mix b s f e -> OpType -> Bool -> [Id]
-> (OP_ATTR f) -> State (Sign f e) (Maybe (OP_ATTR f))
ana_OP_ATTR mef mix ty ni ois oa = do
let sty = toOP_TYPE ty
rty = opRes ty
atys = opArgs ty
q = posOfId rty
case atys of
[t1,t2] | t1 == t2 -> case oa of
Comm_op_attr -> return ()
_ -> if t1 == rty then return ()
else addDiags [Diag Error
"result sort must be equal to argument sorts" q]
_ -> addDiags [Diag Error
"expecting two arguments of equal sort" q]
case oa of
Unit_op_attr t -> do
sign <- get
let Result ds mt = anaTerm mef mix
sign { varMap = Map.empty } rty q t
addDiags ds
case mt of
Nothing -> return Nothing
Just (resT, anaT) -> do
addSentences $ map (makeUnit True anaT ty ni) ois
addSentences $ map (makeUnit False anaT ty ni) ois
return $ Just $ Unit_op_attr resT
Assoc_op_attr -> do
let ns = map mkSimpleId ["x", "y", "z"]
vs = map ( \ v -> Var_decl [v] rty q) ns
[v1, v2, v3] = map ( \ v -> Qual_var v rty q) ns
makeAssoc i = let p = posOfId i
qi = Qual_op_name i sty p in
(makeNamed ("ga_assoc_" ++ showId i "") $
mkForall vs
(Strong_equation
(Application qi [Application qi [v1, v2] p, v3] p)
(Application qi [v1, Application qi [v2, v3] p] p) p) p)
{ isAxiom = ni }
addSentences $ map makeAssoc ois
return $ Just oa
Comm_op_attr -> do
let ns = map mkSimpleId ["x", "y"]
vs = zipWith ( \ v t -> Var_decl [v] t
$ concatMapRange posOfId atys) ns atys
args = map toQualVar vs
makeComm i = let p = posOfId i
qi = Qual_op_name i sty p in
(makeNamed ("ga_comm_" ++ showId i "") $
mkForall vs
(Strong_equation
(Application qi args p)
(Application qi (reverse args) p) p) p) {
isAxiom = ni }
addSentences $ map makeComm ois
return $ Just oa
Idem_op_attr -> do
let v = mkSimpleId "x"
vd = Var_decl [v] rty q
qv = toQualVar vd
makeIdem i = let p = posOfId i in
(makeNamed ("ga_idem_" ++ showId i "") $
mkForall [vd]
(Strong_equation
(Application (Qual_op_name i sty p) [qv, qv] p)
qv p) p) { isAxiom = ni }
addSentences $ map makeIdem ois
return $ Just oa
-- first bool for left and right, second one for no implied annotation
makeUnit :: Bool -> TERM f -> OpType -> Bool -> Id -> Named (FORMULA f)
makeUnit b t ty ni i =
let lab = "ga_" ++ (if b then "right" else "left") ++ "_unit_"
++ showId i ""
v = mkSimpleId "x"
vty = opRes ty
q = posOfId vty
p = posOfId i
qv = Qual_var v vty q
args = [qv, t]
rargs = if b then args else reverse args
in (makeNamed lab $ mkForall [Var_decl [v] vty q]
(Strong_equation
(Application (Qual_op_name i (toOP_TYPE ty) p) rargs p)
qv p) p) {isAxiom = ni }
ana_PRED_ITEM :: Pretty f => Min f e -> Mix b s f e
-> Annoted (PRED_ITEM f)
-> State (Sign f e) (Annoted (PRED_ITEM f))
ana_PRED_ITEM mef mix ap =
case item ap of
Pred_decl preds ty _ ->
do mapM (addPred ap $ toPredType ty) preds
return ap
Pred_defn i phd@(Pred_head args rs) at ps ->
do let lb = getRLabel at
lab = if null lb then getRLabel ap else lb
ty = Pred_type (sortsOfArgs args) rs
vs = map (\ (Arg_decl v s qs) -> (Var_decl v s qs)) args
arg = concatMap ( \ (Var_decl v s qs) ->
map ( \ j -> Qual_var j s qs) v) vs
addPred ap (toPredType ty) i
e <- get -- save
put e { varMap = Map.empty }
mapM_ addVars vs
sign <- get
put e -- restore
let Result ds mt = anaForm mef mix sign $ item at
addDiags ds
case mt of
Nothing -> return ap {item = Pred_decl [i] ty ps}
Just (resF, anaF) -> do
let p = posOfId i
addSentences [(makeNamed lab $
mkForall vs
(Equivalence (Predication (Qual_pred_name i ty p)
arg p) anaF p) p) {
isDef = True }]
return ap {item = Pred_defn i phd at { item = resF } ps}
-- full function type of a selector (result sort is component sort)
data Component = Component { compId :: Id, compType :: OpType }
deriving (Show)
instance Eq Component where
Component i1 t1 == Component i2 t2 =
(i1, opArgs t1, opRes t1) == (i2, opArgs t2, opRes t2)
instance Ord Component where
Component i1 t1 <= Component i2 t2 =
(i1, opArgs t1, opRes t1) <= (i2, opArgs t2, opRes t2)
instance Pretty Component where
pretty (Component i ty) =
pretty i <+> colon <> pretty ty
instance PosItem Component where
getRange = getRange . compId
-- | return list of constructors
ana_DATATYPE_DECL :: GenKind -> DATATYPE_DECL -> State (Sign f e) [Component]
ana_DATATYPE_DECL gk (Datatype_decl s al _) =
do ul <- mapM (ana_ALTERNATIVE s) al
let constr = catMaybes ul
cs = map fst constr
if null constr then return ()
else do addDiags $ checkUniqueness cs
let totalSels = Set.unions $ map snd constr
wrongConstr = filter ((totalSels /=) . snd) constr
addDiags $ map ( \ (c, _) -> mkDiag Error
("total selectors '" ++ showSepList (showString ",")
showDoc (Set.toList totalSels)
"'\n must appear in alternative") c) wrongConstr
case gk of
Free -> do
let allts = map item al
(alts, subs) = partition isConsAlt allts
sbs = concatMap getAltSubsorts subs
comps = map (getConsType s) alts
ttrips = map (( \ (a, vs, t, ses) -> (a, vs, t, catSels ses))
. selForms1 "X" ) comps
sels = concatMap ( \ (_, _, _, ses) -> ses) ttrips
addSentences $ map makeInjective
$ filter ( \ (_, _, ces) -> not $ null ces)
comps
addSentences $ makeDisjSubsorts s sbs
addSentences $ concatMap ( \ c -> map (makeDisjToSort c) sbs)
comps
addSentences $ makeDisjoint comps
addSentences $ catMaybes $ concatMap
( \ ses ->
map (makeUndefForm ses) ttrips) sels
_ -> return ()
return cs
makeDisjSubsorts :: SORT -> [SORT] -> [Named (FORMULA f)]
makeDisjSubsorts d subs = case subs of
[] -> []
s : rs -> map (makeDisjSubsort s) rs ++ makeDisjSubsorts d rs
where
makeDisjSubsort :: SORT -> SORT -> Named (FORMULA f)
makeDisjSubsort s1 s2 = let
n = mkSimpleId "x"
pd = posOfId d
p1 = posOfId s1
p2 = posOfId s2
p = pd `appRange` p1 `appRange` p2
v = Var_decl [n] d pd
qv = toQualVar v
in makeNamed ("ga_disjoint_sorts_" ++ showId s1 "_" ++ showId s2 "")
$ mkForall [v] (Negation (Conjunction [
Membership qv s1 p1, Membership qv s2 p2] p) p) p
makeDisjToSort :: (Id, OpType, [COMPONENTS]) -> SORT -> Named (FORMULA f)
makeDisjToSort a s =
let (c, v, t, _) = selForms1 "X" a
p = posOfId s
in makeNamed ("ga_disjoint_" ++ showId c "_sort_" ++ showId s "")
$ mkForall v (Negation (Membership t s p) p) p
makeInjective :: (Id, OpType, [COMPONENTS]) -> Named (FORMULA f)
makeInjective a =
let (c, v1, t1, _) = selForms1 "X" a
(_, v2, t2, _) = selForms1 "Y" a
p = posOfId c
in makeNamed ("ga_injective_" ++ showId c "")
$ mkForall (v1 ++ v2)
(Equivalence (Strong_equation t1 t2 p)
(let ces = zipWith ( \ w1 w2 -> Strong_equation
(toQualVar w1) (toQualVar w2) p) v1 v2
in if isSingle ces then head ces else Conjunction ces p)
p) p
makeDisjoint :: [(Id, OpType, [COMPONENTS])] -> [Named (FORMULA f)]
makeDisjoint l = case l of
[] -> []
c : cs -> map (makeDisj c) cs ++ makeDisjoint cs
where
makeDisj :: (Id, OpType, [COMPONENTS]) -> (Id, OpType, [COMPONENTS])
-> Named (FORMULA f)
makeDisj a1 a2 =
let (c1, v1, t1, _) = selForms1 "X" a1
(c2, v2, t2, _) = selForms1 "Y" a2
p = posOfId c1 `appRange` posOfId c2
in makeNamed ("ga_disjoint_" ++ showId c1 "_" ++ showId c2 "")
$ mkForall (v1 ++ v2) (Negation (Strong_equation t1 t2 p) p) p
catSels :: [(Maybe Id, OpType)] -> [(Id, OpType)]
catSels = map ( \ (m, t) -> (fromJust m, t)) .
filter ( \ (m, _) -> isJust m)
makeUndefForm :: (Id, OpType) -> (Id, [VAR_DECL], TERM f, [(Id, OpType)])
-> Maybe (Named (FORMULA f))
makeUndefForm (s, ty) (i, vs, t, sels) =
let p = posOfId s in
if any ( \ (se, ts) -> s == se && opRes ts == opRes ty ) sels
then Nothing else
Just $ makeNamed ("ga_selector_undef_" ++ showId s "_" ++ showId i "")
$ mkForall vs
(Negation
(Definedness
(Application (Qual_op_name s (toOP_TYPE ty) p) [t] p)
p) p) p
getAltSubsorts :: ALTERNATIVE -> [SORT]
getAltSubsorts c = case c of
Subsorts cs _ -> cs
_ -> []
getConsType :: SORT -> ALTERNATIVE -> (Id, OpType, [COMPONENTS])
getConsType s c =
let getConsTypeAux (part, i, il) =
(i, OpType part (concatMap
(map (opRes . snd) . getCompType s) il) s, il)
in case c of
Subsorts _ _ -> error "getConsType"
Alt_construct k a l _ -> getConsTypeAux (k, a, l)
getCompType :: SORT -> COMPONENTS -> [(Maybe Id, OpType)]
getCompType s (Cons_select k l cs _) =
map (\ i -> (Just i, OpType k [s] cs)) l
getCompType s (Sort cs) = [(Nothing, OpType Partial [s] cs)]
genSelVars :: String -> Int -> [OpType] -> [VAR_DECL]
genSelVars _ _ [] = []
genSelVars str n (ty:rs) =
Var_decl [mkSelVar str n] (opRes ty) nullRange : genSelVars str (n+1) rs
mkSelVar :: String -> Int -> Token
mkSelVar str n = mkSimpleId (str ++ show n)
makeSelForms :: Int -> (Id, [VAR_DECL], TERM f, [(Maybe Id, OpType)])
-> [Named (FORMULA f)]
makeSelForms _ (_, _, _, []) = []
makeSelForms n (i, vs, t, (mi, ty):rs) =
(case mi of
Nothing -> []
Just j -> let p = posOfId j
rty = opRes ty
q = posOfId rty in
[makeNamed ("ga_selector_" ++ showId j "")
$ mkForall vs
(Strong_equation
(Application (Qual_op_name j (toOP_TYPE ty) p) [t] p)
(Qual_var (mkSelVar "X" n) rty q) p) p]
) ++ makeSelForms (n+1) (i, vs, t, rs)
selForms1 :: String -> (Id, OpType, [COMPONENTS])
-> (Id, [VAR_DECL], TERM f, [(Maybe Id, OpType)])
selForms1 str (i, ty, il) =
let cs = concatMap (getCompType (opRes ty)) il
vs = genSelVars str 1 $ map snd cs
in (i, vs, Application (Qual_op_name i (toOP_TYPE ty) nullRange)
(map toQualVar vs) nullRange, cs)
toQualVar :: VAR_DECL -> TERM f
toQualVar (Var_decl v s ps) =
if isSingle v then Qual_var (head v) s ps else error "toQualVar"
selForms :: (Id, OpType, [COMPONENTS]) -> [Named (FORMULA f)]
selForms = makeSelForms 1 . selForms1 "X"
-- | return the constructor and the set of total selectors
ana_ALTERNATIVE :: SORT -> Annoted ALTERNATIVE
-> State (Sign f e) (Maybe (Component, Set.Set Component))
ana_ALTERNATIVE s c =
case item c of
Subsorts ss _ -> do
mapM_ (addSubsort s) ss
return Nothing
ic -> do
let cons@(i, ty, il) = getConsType s ic
addOp c ty i
ul <- mapM (ana_COMPONENTS s) il
let ts = concatMap fst ul
addDiags $ checkUniqueness (ts ++ concatMap snd ul)
addSentences $ selForms cons
return $ Just (Component i ty, Set.fromList ts)
-- | return total and partial selectors
ana_COMPONENTS :: SORT -> COMPONENTS
-> State (Sign f e) ([Component], [Component])
ana_COMPONENTS s c = do
let cs = getCompType s c
sels <- mapM ( \ (mi, ty) ->
case mi of
Nothing -> return Nothing
Just i -> do addOp (emptyAnno ()) ty i
return $ Just $ Component i ty) cs
return $ partition ((==Total) . opKind . compType) $ catMaybes sels
-- | utility
resultToState :: (a -> Result a) -> a -> State (Sign f e) a
resultToState f a = do
let r = f a
addDiags $ diags r
case maybeResult r of
Nothing -> return a
Just b -> return b
-- wrap it all up for a logic
type Ana a b s f e = Mix b s f e -> a -> State (Sign f e) a
anaForm :: Pretty f => Min f e -> Mix b s f e -> Sign f e -> FORMULA f
-> Result (FORMULA f, FORMULA f)
anaForm mef mix sign f = do
resF <- resolveFormula (putParen mix) (mixResolve mix)
(globAnnos sign) (mixRules mix) f
anaF <- minExpFORMULA mef sign
$ assert (noMixfixF (checkMix mix) resF) resF
return (resF, anaF)
anaTerm :: Pretty f => Min f e -> Mix b s f e -> Sign f e -> SORT -> Range
-> TERM f -> Result (TERM f, TERM f)
anaTerm mef mix sign srt pos t = do
resT <- resolveMixfix (putParen mix) (mixResolve mix)
(globAnnos sign) (mixRules mix) t
anaT <- oneExpTerm mef sign
$ assert (noMixfixT (checkMix mix) resT) $ Sorted_term resT srt pos
return (resT, anaT)
basicAnalysis :: Pretty f
=> Min f e -- ^ type analysis of f
-> Ana b b s f e -- ^ static analysis of basic item b
-> Ana s b s f e -- ^ static analysis of signature item s
-> Mix b s f e -- ^ for mixfix analysis
-> (BASIC_SPEC b s f, Sign f e, GlobalAnnos)
-> Result (BASIC_SPEC b s f, Sign f e, [Named (FORMULA f)])
-- ^ (BS with analysed mixfix formulas for pretty printing,
-- differences to input Sig,accumulated Sig,analysed Sentences)
basicAnalysis mef anab anas mix (bs, inSig, ga) =
let allIds = unite $ ids_BASIC_SPEC (getBaseIds mix) (getSigIds mix) bs
: getExtIds mix (extendedInfo inSig) :
[mkIdSets (allOpIds inSig) $ allPredIds inSig]
(newBs, accSig) = runState (ana_BASIC_SPEC mef anab anas
mix { mixRules = makeRules ga allIds }
bs) inSig { globAnnos = addAssocs inSig ga }
ds = reverse $ envDiags accSig
sents = reverse $ sentences accSig
cleanSig = accSig { envDiags = [], sentences = []
, varMap = Map.empty
, globAnnos = ga } -- ignore assoc declarations
in Result ds $ Just (newBs, cleanSig, sents)
basicCASLAnalysis :: (BASIC_SPEC () () (), Sign () (), GlobalAnnos)
-> Result (BASIC_SPEC () () (),
Sign () (), [Named (FORMULA ())])
basicCASLAnalysis =
basicAnalysis (const return) (const return) (const return) emptyMix