Simplify.hs revision ab65d3acbdf1c11c762c17b8e4eb577a0342afcb
{- |
Module : $Header$
Description : resolve empty conjunctions and other trivial cases
Copyright : (c) Christian Maeder, Uni Bremen 2005
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
Resolve empty conjunctions and other trivial cases
-}
module CASL.Simplify where
import CASL.AS_Basic_CASL
import CASL.Fold
import Common.Id
import Common.Utils (nubOrd)
negateFormula :: FORMULA f -> Maybe (FORMULA f)
negateFormula f = case f of
Sort_gen_ax {} -> Nothing
_ -> Just $ negateForm f nullRange
mkJunction :: Ord f => Junctor -> [FORMULA f] -> Range -> FORMULA f
mkJunction j fs ps = let
(isTop, top, join) = case j of
Con -> (is_False_atom, False, conjunctRange)
Dis -> (is_True_atom, True, disjunctRange)
in case nubOrd $ concatMap (\ f -> case f of
Junction j2 ffs _ | j == j2 -> ffs
Negation (Junction j2 ffs _) p | j /= j2 ->
map (`negateForm` p) ffs
Atom b _ | b /= top -> []
_ -> [f]) fs of
flat -> if any (\ f -> isTop f || elem (mkNeg f) flat) flat
then Atom top ps else join flat ps
mkRelation :: Ord f => FORMULA f -> Relation -> FORMULA f -> Range -> FORMULA f
mkRelation f1 c f2 ps =
let nf1 = negateForm f1 ps
tf = Atom True ps
equiv = c == Equivalence
in case f1 of
Atom b _
| b -> f2
| equiv -> negateForm f2 ps
| otherwise -> tf
_ -> case f2 of
Atom b _
| not b -> nf1
| equiv -> f1
| otherwise -> tf
_ | f1 == f2 -> tf
| nf1 == f2 -> if equiv then Atom False ps else f1
_ -> Relation f1 c f2 ps
mkEquation :: Ord f => TERM f -> Equality -> TERM f -> Range -> FORMULA f
mkEquation t1 e t2 ps =
if e == Strong && t1 == t2 then Atom True ps else Equation t1 e t2 ps
simplifyRecord :: Ord f => (f -> f) -> Record f (FORMULA f) (TERM f)
simplifyRecord mf = (mapRecord mf)
{ foldConditional = \ _ t1 f t2 ps -> case f of
Atom b _ -> if b then t1 else t2
_ -> Conditional t1 f t2 ps
, foldQuantification = \ _ q vs qf ps ->
let nf = Quantification q vs qf ps in
case q of
Unique_existential -> nf
_ -> if null vs then qf else case (qf, q) of
(Atom True _, Universal) -> qf
(Atom False _, Existential) -> qf
_ -> nf
, foldJunction = const mkJunction
, foldRelation = const mkRelation
, foldNegation = const negateForm
, foldEquation = const mkEquation
}
simplifyTerm :: Ord f => (f -> f) -> TERM f -> TERM f
simplifyTerm = foldTerm . simplifyRecord
simplifyFormula :: Ord f => (f -> f) -> FORMULA f -> FORMULA f
simplifyFormula = foldFormula . simplifyRecord