Sign.hs revision ead4d317053c9092c59a16de66cac61f619a1293
{- |
Module : $Header$
Description : CASL signatures and local environments for basic analysis
Copyright : (c) Christian Maeder and Uni Bremen 2002-2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
CASL signatures also serve as local environments for the basic static analysis
-}
module CASL.Sign where
import CASL.AS_Basic_CASL
import CASL.ToDoc ()
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Common.Lib.Rel as Rel
import qualified Common.Lib.State as State
import Common.Keywords
import Common.Id
import Common.Result
import Common.AS_Annotation
import Common.GlobalAnnotations
import Common.Doc
import Common.DocUtils
import Data.List (isPrefixOf)
import Control.Monad (when, unless)
-- constants have empty argument lists
data OpType = OpType {opKind :: OpKind, opArgs :: [SORT], opRes :: SORT}
deriving (Show, Eq, Ord)
data PredType = PredType {predArgs :: [SORT]} deriving (Show, Eq, Ord)
type OpMap = Map.Map Id (Set.Set OpType)
data SymbType = SortAsItemType
| OtherTypeKind String
| OpAsItemType OpType
-- since symbols do not speak about totality, the totality
-- information in OpType has to be ignored
| PredAsItemType PredType
deriving (Show, Eq, Ord)
data Symbol = Symbol {symName :: Id, symbType :: SymbType}
deriving (Show, Eq, Ord)
instance GetRange Symbol where
getRange = getRange . symName
idToSortSymbol :: Id -> Symbol
idToSortSymbol idt = Symbol idt SortAsItemType
idToOpSymbol :: Id -> OpType -> Symbol
idToOpSymbol idt = Symbol idt . OpAsItemType
idToPredSymbol :: Id -> PredType -> Symbol
idToPredSymbol idt = Symbol idt . PredAsItemType
dummy :: Sign f s -> a -> ()
dummy _ _ = ()
dummyMin :: b -> c -> Result ()
dummyMin _ _ = return ()
type CASLSign = Sign () ()
data Sign f e = Sign
{ sortSet :: Set.Set SORT
, emptySortSet :: Set.Set SORT
-- a subset of the sort set of possibly empty sorts
, sortRel :: Rel.Rel SORT
, opMap :: OpMap
, assocOps :: OpMap
, predMap :: Map.Map Id (Set.Set PredType)
, varMap :: Map.Map SIMPLE_ID SORT
, sentences :: [Named (FORMULA f)]
, declaredSymbols :: Set.Set Symbol
, envDiags :: [Diagnosis]
, annoMap :: Map.Map Symbol (Set.Set Annotation)
, globAnnos :: GlobalAnnos
, extendedInfo :: e
} deriving Show
-- better ignore assoc flags for equality
instance Eq e => Eq (Sign f e) where
a == b = compare a {extendedInfo = ()} b {extendedInfo = ()} == EQ
&& extendedInfo a == extendedInfo b
instance Ord e => Ord (Sign f e) where
compare a b = compare
(sortSet a, emptySortSet a, sortRel a, opMap a, predMap a, extendedInfo a)
(sortSet b, emptySortSet b, sortRel b, opMap b, predMap b, extendedInfo b)
emptySign :: e -> Sign f e
emptySign e = Sign
{ sortSet = Set.empty
, emptySortSet = Set.empty
, sortRel = Rel.empty
, opMap = Map.empty
, assocOps = Map.empty
, predMap = Map.empty
, varMap = Map.empty
, sentences = []
, declaredSymbols = Set.empty
, envDiags = []
, annoMap = Map.empty
, globAnnos = emptyGlobalAnnos
, extendedInfo = e }
class SignExtension e where
isSubSignExtension :: e -> e -> Bool
instance SignExtension () where
isSubSignExtension _ _ = True
-- | proper subsorts (possibly excluding input sort)
subsortsOf :: SORT -> Sign f e -> Set.Set SORT
subsortsOf s e = Rel.predecessors (sortRel e) s
-- | proper supersorts (possibly excluding input sort)
supersortsOf :: SORT -> Sign f e -> Set.Set SORT
supersortsOf s e = Rel.succs (sortRel e) s
toOP_TYPE :: OpType -> OP_TYPE
toOP_TYPE OpType { opArgs = args, opRes = res, opKind = k } =
Op_type k args res nullRange
toPRED_TYPE :: PredType -> PRED_TYPE
toPRED_TYPE PredType { predArgs = args } = Pred_type args nullRange
toOpType :: OP_TYPE -> OpType
toOpType (Op_type k args r _) = OpType k args r
toPredType :: PRED_TYPE -> PredType
toPredType (Pred_type args _) = PredType args
instance Pretty OpType where
pretty = pretty . toOP_TYPE
instance Pretty PredType where
pretty = pretty . toPRED_TYPE
instance (Show f, Pretty e) => Pretty (Sign f e) where
pretty = printSign pretty
instance Pretty Symbol where
pretty sy = let n = pretty (symName sy) in
case symbType sy of
SortAsItemType -> n
OtherTypeKind s -> text s <+> n
PredAsItemType pt -> let p = n <+> colon <+> pretty pt in
case predArgs pt of
[_] -> text predS <+> p
_ -> p
OpAsItemType ot -> let o = n <+> colon <> pretty ot in
case opArgs ot of
[] | opKind ot == Total -> text opS <+> o
_ -> o
instance Pretty SymbType where
pretty st = case st of
OpAsItemType ot -> pretty ot
PredAsItemType pt -> space <> pretty pt
_ -> empty
printSign :: (e -> Doc) -> Sign f e -> Doc
printSign fE s = let
printRel (supersort, subsorts) =
ppWithCommas (Set.toList subsorts) <+> text lessS <+>
idDoc supersort
esorts = emptySortSet s
srel = sortRel s
cs = Rel.sccOfClosure $ Rel.transClosure srel
nsorts = Set.difference (sortSet s) esorts in
(if Set.null nsorts then empty else text (sortS ++ sS) <+>
sepByCommas (map idDoc (Set.toList nsorts))) $+$
(if Set.null esorts then empty else text (esortS ++ sS) <+>
sepByCommas (map idDoc (Set.toList esorts))) $+$
(if Rel.null srel then empty
else text (sortS++sS) <+>
fsep (punctuate semi $
map (fsep . punctuate (space <> equals) . map pretty)
(filter ((> 1) . length) $ map Set.toList cs)
++ map printRel (Map.toList
$ Rel.toMap $ Rel.transpose $ Rel.transReduce $ Rel.irreflex
$ Rel.collaps cs srel)))
$+$ printSetMap (text opS) empty (opMap s)
$+$ printSetMap (text predS) space (predMap s)
$+$ fE (extendedInfo s)
-- working with Sign
irreflexClosure :: Ord a => Rel.Rel a -> Rel.Rel a
irreflexClosure = Rel.irreflex . Rel.transClosure
closeSortRel :: Sign f e -> Sign f e
closeSortRel s =
s { sortRel = irreflexClosure $ sortRel s }
diffSig :: (e -> e -> e) -> Sign f e -> Sign f e -> Sign f e
diffSig dif a b = let s = sortSet a `Set.difference` sortSet b in
closeSortRel a
{ sortSet = s
, emptySortSet = Set.difference s
$ nonEmptySortSet a `Set.difference` nonEmptySortSet b
, sortRel = Rel.difference (sortRel a) $ sortRel b
, opMap = opMap a `diffOpMapSet` opMap b
, assocOps = assocOps a `diffOpMapSet` assocOps b
, predMap = predMap a `diffMapSet` predMap b
, annoMap = annoMap a `diffMapSet` annoMap b
, extendedInfo = dif (extendedInfo a) $ extendedInfo b }
-- transClosure needed: {a < b < c} - {a < c; b}
-- is not transitive!
diffOpMapSet :: OpMap -> OpMap -> OpMap
diffOpMapSet m = diffMapSet m . Map.map (rmOrAddParts False)
diffMapSet :: (Ord a, Ord b) => Map.Map a (Set.Set b)
-> Map.Map a (Set.Set b) -> Map.Map a (Set.Set b)
diffMapSet = Map.differenceWith
(\ s t -> let d = Set.difference s t in
if Set.null d then Nothing else Just d)
addMapSet :: (Ord a, Ord b) => Map.Map a (Set.Set b) -> Map.Map a (Set.Set b)
-> Map.Map a (Set.Set b)
addMapSet = Map.unionWith Set.union
mkPartial :: OpType -> OpType
mkPartial o = o { opKind = Partial }
mkTotal :: OpType -> OpType
mkTotal o = o { opKind = Total }
makePartial :: Set.Set OpType -> Set.Set OpType
makePartial = Set.mapMonotonic mkPartial
-- | remove (True) or add (False) partial op if it is included as total
rmOrAddParts :: Bool -> Set.Set OpType -> Set.Set OpType
rmOrAddParts b s =
let t = makePartial $ Set.filter ((== Total) . opKind) s
in (if b then Set.difference else Set.union) s t
addOpMapSet :: OpMap -> OpMap -> OpMap
addOpMapSet m = Map.map (rmOrAddParts True). addMapSet m
interMapSet :: (Ord a, Ord b) => Map.Map a (Set.Set b) -> Map.Map a (Set.Set b)
-> Map.Map a (Set.Set b)
interMapSet m =
Map.filter (not . Set.null) . Map.intersectionWith Set.intersection m
interOpMapSet :: OpMap -> OpMap -> OpMap
interOpMapSet m = Map.filter (not . Set.null)
. Map.intersectionWith
(\ s t -> rmOrAddParts True $ Set.intersection (rmOrAddParts False s)
$ rmOrAddParts False t) m
uniteCASLSign :: Sign () () -> Sign () () -> Sign () ()
uniteCASLSign = addSig (\_ _ -> ())
nonEmptySortSet :: Sign f e -> Set.Set Id
nonEmptySortSet s = Set.difference (sortSet s) $ emptySortSet s
addSig :: (e -> e -> e) -> Sign f e -> Sign f e -> Sign f e
addSig ad a b = let s = sortSet a `Set.union` sortSet b in
closeSortRel a
{ sortSet = s
, emptySortSet = Set.difference s
$ nonEmptySortSet a `Set.union` nonEmptySortSet b
, sortRel = Rel.union (sortRel a) $ sortRel b
, opMap = addOpMapSet (opMap a) $ opMap b
, assocOps = addOpMapSet (assocOps a) $ assocOps b
, predMap = addMapSet (predMap a) $ predMap b
, annoMap = addMapSet (annoMap a) $ annoMap b
, extendedInfo = ad (extendedInfo a) $ extendedInfo b }
interRel :: Ord a => Rel.Rel a -> Rel.Rel a -> Rel.Rel a
interRel a = Rel.fromSet
. Set.intersection (Rel.toSet a) . Rel.toSet
interSig :: (e -> e -> e) -> Sign f e -> Sign f e -> Sign f e
interSig ef a b = let s = sortSet a `Set.intersection` sortSet b in
closeSortRel a
{ sortSet = s
, emptySortSet = Set.difference s
$ nonEmptySortSet a `Set.intersection` nonEmptySortSet b
, sortRel = interRel (sortRel a) $ sortRel b
, opMap = interOpMapSet (opMap a) $ opMap b
, assocOps = interOpMapSet (assocOps a) $ assocOps b
, predMap = interMapSet (predMap a) $ predMap b
, annoMap = interMapSet (annoMap a) $ annoMap b
, extendedInfo = ef (extendedInfo a) $ extendedInfo b }
isEmptySig :: (e -> Bool) -> Sign f e -> Bool
isEmptySig ie s =
Set.null (sortSet s) &&
Rel.null (sortRel s) &&
Map.null (opMap s) &&
Map.null (predMap s) && ie (extendedInfo s)
isSubMapSet :: (Ord a, Ord b) => Map.Map a (Set.Set b) -> Map.Map a (Set.Set b)
-> Bool
isSubMapSet = Map.isSubmapOfBy Set.isSubsetOf
isSubOpMap :: OpMap -> OpMap -> Bool
isSubOpMap = Map.isSubmapOfBy $ \ s t ->
Set.fold (\ e -> (&& (Set.member e t || case opKind e of
Partial -> Set.member (mkTotal e) t
Total -> False))) True s
isSubSig :: (e -> e -> Bool) -> Sign f e -> Sign f e -> Bool
isSubSig isSubExt a b = Set.isSubsetOf (sortSet a) (sortSet b)
&& Rel.isSubrelOf (sortRel a) (sortRel b)
-- ignore empty sort sorts
&& isSubOpMap (opMap a) (opMap b)
-- ignore associativity properties!
&& isSubMapSet (predMap a) (predMap b)
&& isSubExt (extendedInfo a) (extendedInfo b)
addDiags :: [Diagnosis] -> State.State (Sign f e) ()
addDiags ds = do
e <- State.get
State.put e { envDiags = reverse ds ++ envDiags e }
addAnnoSet :: Annoted a -> Symbol -> State.State (Sign f e) ()
addAnnoSet a s = do
addSymbol s
let v = Set.union (Set.fromList $ l_annos a) $ Set.fromList $ r_annos a
unless (Set.null v) $ do
e <- State.get
State.put e { annoMap = Map.insertWith Set.union s v $ annoMap e }
addSymbol :: Symbol -> State.State (Sign f e) ()
addSymbol s = do
e <- State.get
State.put e { declaredSymbols = Set.insert s $ declaredSymbols e }
addSort :: SortsKind -> Annoted a -> SORT -> State.State (Sign f e) ()
addSort sk a s = do
e <- State.get
let m = sortSet e
em = emptySortSet e
known = Set.member s m
if known then addDiags [mkDiag Hint "redeclared sort" s]
else do
State.put e { sortSet = Set.insert s m }
addDiags $ checkNamePrefix s
case sk of
NonEmptySorts -> when (Set.member s em) $ do
e2 <- State.get
State.put e2 { emptySortSet = Set.delete s em }
addDiags [mkDiag Warning "redeclared sort as non-empty" s]
PossiblyEmptySorts -> if known then
addDiags [mkDiag Warning "non-empty sort remains non-empty" s]
else do
e2 <- State.get
State.put e2 { emptySortSet = Set.insert s em }
addAnnoSet a $ Symbol s SortAsItemType
hasSort :: Sign f e -> SORT -> [Diagnosis]
hasSort e s =
[ mkDiag Error "unknown sort" s
| not $ Set.member s $ sortSet e ]
checkSorts :: [SORT] -> State.State (Sign f e) ()
checkSorts s = do
e <- State.get
addDiags $ concatMap (hasSort e) s
addSubsort :: SORT -> SORT -> State.State (Sign f e) ()
addSubsort = addSubsortOrIso True
addSubsortOrIso :: Bool -> SORT -> SORT -> State.State (Sign f e) ()
addSubsortOrIso b super sub = do
when b $ checkSorts [super, sub]
e <- State.get
let r = sortRel e
State.put e { sortRel = (if b then id else Rel.insert super sub)
$ Rel.insert sub super r }
let p = posOfId sub
rel = " '" ++
showDoc sub (if b then " < " else " = ") ++ showDoc super "'"
if super == sub then addDiags [mkDiag Warning "void reflexive subsort" sub]
else if b then
if Rel.path super sub r then
if Rel.path sub super r
then addDiags [Diag Warning ("sorts are isomorphic" ++ rel) p]
else addDiags [Diag Warning ("added subsort cycle by" ++ rel) p]
else when (Rel.path sub super r)
$ addDiags [Diag Hint ("redeclared subsort" ++ rel) p]
else if Rel.path super sub r then
if Rel.path sub super r
then addDiags [Diag Hint ("redeclared isomoprhic sorts" ++ rel) p]
else addDiags [Diag Warning ("subsort '" ++
showDoc super "' made isomorphic by" ++ rel) $ posOfId super]
else when (Rel.path sub super r)
$ addDiags [Diag Warning ("subsort '" ++
showDoc sub "' made isomorphic by" ++ rel) p]
closeSubsortRel :: State.State (Sign f e) ()
closeSubsortRel=
do e <- State.get
State.put e { sortRel = Rel.transClosure $ sortRel e }
checkNamePrefix :: Id -> [Diagnosis]
checkNamePrefix i =
[ mkDiag Warning "identifier may conflict with generated names" i
| isPrefixOf genNamePrefix $ showId i ""]
alsoWarning :: String -> String -> Id -> [Diagnosis]
alsoWarning new old i = let is = ' ' : showId i "'" in
[Diag Warning ("new '" ++ new ++ is ++ " is also known as '" ++ old ++ is)
$ posOfId i]
checkWithOtherMap :: String -> String -> Map.Map Id a -> Id -> [Diagnosis]
checkWithOtherMap s1 s2 m i =
case Map.lookup i m of
Nothing -> []
Just _ -> alsoWarning s1 s2 i
addVars :: VAR_DECL -> State.State (Sign f e) ()
addVars (Var_decl vs s _) = do
checkSorts [s]
mapM_ (addVar s) vs
addVar :: SORT -> SIMPLE_ID -> State.State (Sign f e) ()
addVar s v =
do e <- State.get
let m = varMap e
i = simpleIdToId v
ds = case Map.lookup v m of
Just _ -> [mkDiag Hint "known variable shadowed" v]
Nothing -> []
State.put e { varMap = Map.insert v s m }
addDiags $ ds ++ checkWithOtherMap varS opS (opMap e) i
++ checkWithOtherMap varS predS (predMap e) i
++ checkNamePrefix i
addOpTo :: Id -> OpType -> OpMap -> OpMap
addOpTo k v m =
let l = Map.findWithDefault Set.empty k m
in Map.insert k (Set.insert v l) m
-- | extract the sort from an analysed term
sortOfTerm :: TERM f -> SORT
sortOfTerm t = case t of
Qual_var _ ty _ -> ty
Application (Qual_op_name _ ot _) _ _ -> res_OP_TYPE ot
Sorted_term _ ty _ -> ty
Cast _ ty _ -> ty
Conditional t1 _ _ _ -> sortOfTerm t1
_ -> genName "unknown"
-- | create binding if variables are non-null
mkForall :: [VAR_DECL] -> FORMULA f -> Range -> FORMULA f
mkForall vl f ps = if null vl then f else Quantification Universal vl f ps
-- | convert a singleton variable declaration into a qualified variable
toQualVar :: VAR_DECL -> TERM f
toQualVar (Var_decl v s ps) =
if isSingle v then Qual_var (head v) s ps else error "toQualVar"
mkImpl :: FORMULA f -> FORMULA f -> FORMULA f
mkImpl f f' = Implication f f' True nullRange
mkExEq :: TERM f -> TERM f -> FORMULA f
mkExEq f f' = Existl_equation f f' nullRange
mkAppl :: OP_SYMB -> [TERM f] -> TERM f
mkAppl op_symb fs = Application op_symb fs nullRange
-- | turn sorted variable into variable delcaration
mkVarDecl :: VAR -> SORT -> VAR_DECL
mkVarDecl v s = Var_decl [v] s nullRange
-- | turn sorted variable into term
mkVarTerm :: VAR -> SORT -> TERM f
mkVarTerm v = toQualVar . mkVarDecl v
-- | optimized conjunction
conjunct :: [FORMULA f] -> FORMULA f
conjunct fs = case fs of
[] -> False_atom nullRange
[phi] -> phi
_ -> Conjunction fs nullRange
mkVarDeclStr :: String -> SORT -> VAR_DECL
mkVarDeclStr = mkVarDecl . mkSimpleId