ShowMixfix.hs revision 97018cf5fa25b494adffd7e9b4e87320dae6bf47
{- |
Module : $Header$
Copyright : (c) Christian Maeder, Uni Bremen 2002-2004
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : provisional
Portability : portable
This module puts parenthesis around mixfix term for
unambiguous pretty printing
-}
module CASL.ShowMixfix where
import CASL.AS_Basic_CASL
mapTerm :: (f -> f) -> TERM f -> TERM f
mapTerm mf t = case t of
Application o ts@(_:_) ps ->
Mixfix_term [Application o [] [], Mixfix_parenthesized
(map (mapTerm mf) ts) ps]
Sorted_term st s ps -> let
newT = mapTerm mf st
in Sorted_term newT s ps
Cast st s ps -> let
newT = mapTerm mf st
in Cast newT s ps
Conditional t1 f t2 ps -> let
t3 = mapTerm mf t1
newF = mapFormula mf f
t4 = mapTerm mf t2
in Conditional t3 newF t4 ps
Mixfix_term ts -> let
newTs = map (mapTerm mf) ts
in Mixfix_term newTs
Mixfix_parenthesized ts ps -> let
newTs = map (mapTerm mf) ts
in Mixfix_parenthesized newTs ps
Mixfix_bracketed ts ps -> let
newTs = map (mapTerm mf) ts
in Mixfix_bracketed newTs ps
Mixfix_braced ts ps -> let
newTs = map (mapTerm mf) ts
in Mixfix_braced newTs ps
_ -> t
mapFormula :: (f -> f) -> FORMULA f -> FORMULA f
mapFormula mf f = case f of
Quantification q vs qf ps -> let
newF = mapFormula mf qf
in Quantification q vs newF ps
Conjunction fs ps -> let
newFs = map (mapFormula mf) fs
in Conjunction newFs ps
Disjunction fs ps -> let
newFs = map (mapFormula mf) fs
in Disjunction newFs ps
Implication f1 f2 b ps -> let
f3 = mapFormula mf f1
f4 = mapFormula mf f2
in Implication f3 f4 b ps
Equivalence f1 f2 ps -> let
f3 = mapFormula mf f1
f4 = mapFormula mf f2
in Equivalence f3 f4 ps
Negation nf ps -> let
newF = mapFormula mf nf
in Negation newF ps
Predication p ts@(_:_) ps ->
Mixfix_formula $ Mixfix_term [Mixfix_qual_pred p, Mixfix_parenthesized
(map (mapTerm mf) ts) ps]
Definedness t ps -> let
newT = mapTerm mf t
in Definedness newT ps
Existl_equation t1 t2 ps -> let
t3 = mapTerm mf t1
t4 = mapTerm mf t2
in Existl_equation t3 t4 ps
Strong_equation t1 t2 ps -> let
t3 = mapTerm mf t1
t4 = mapTerm mf t2
in Strong_equation t3 t4 ps
Membership t s ps -> let
newT = mapTerm mf t
in Membership newT s ps
ExtFORMULA ef -> ExtFORMULA $ mf ef
Mixfix_formula t -> Mixfix_formula $ mapTerm mf t
_ -> f