QuickCheck.hs revision 6f485a7c411a3a411673a43aadd6293975f1b029
{- |
Module : $Header$
Description : QuickCheck model checker for CASL.CFOL
Copyright : (c) Till Mossakowski, Uni Bremen 2007
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : till@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable (via GUI imports, FlexibleInstances)
QuickCheck model checker for CASL.CFOL.
Initially, only finite enumeration domains are supported
-}
module CASL.QuickCheck(quickCheckProver,
Q_ProofTree (..),
QModel (..),
VARIABLE_ASSIGNMENT (..)) where
import qualified Common.AS_Annotation as AS_Anno
import qualified Common.Result as Result
import CASL.AS_Basic_CASL
import CASL.Sublogic as SL
import CASL.Sign
import CASL.Quantification
import CASL.ToDoc
import CASL.SimplifySen
import Logic.Prover
import SoftFOL.ProverState (parseTactic_script)
import Common.Result
import Common.Id
import Common.DocUtils
import qualified Data.Map as Map
import Data.Maybe
import Data.List
import Control.Monad.Error
import Control.Concurrent
import Control.Concurrent.MVar
import System.IO
import GUI.GenericATP
import GUI.GenericATPState
import Proofs.BatchProcessing
-- a qmodel is a certain term model used by QuickCheck
data QModel = QModel
{ sign :: CASLSign,
-- sentences determining the set of terms for a sort
carrierSens :: Map.Map SORT [CASLFORMULA],
-- definitions of predicates and operations
predDefs :: Map.Map PRED_SYMB [([CASLTERM],CASLFORMULA)],
opDefs :: Map.Map OP_SYMB [([CASLTERM],CASLTERM)],
-- currently evaluated items,
-- for avoiding infinite recursion
evaluatedPreds :: [(PRED_SYMB,[CASLTERM])],
evaluatedOps :: [(OP_SYMB,[CASLTERM])]
}
deriving (Eq, Show)
{- |
Run the QuickCheck service.
-}
runQuickCheck :: QModel
-- ^ logical part containing the input Sign and axioms and possibly
-- goals that have been proved earlier as additional axioms
-> GenericConfig Q_ProofTree -- ^ configuration to use
-> Bool -- ^ True means save theory file
-> String -- ^ name of the theory in the DevGraph
-> AS_Anno.Named CASLFORMULA -- ^ goal to prove
-> IO (ATPRetval, GenericConfig Q_ProofTree)
-- ^ (retval, configuration with proof status and complete output)
runQuickCheck qm cfg _saveFile _thName nGoal = do
(stat,Result d res) <- case timeLimit cfg of
Nothing -> do
mVar <- newEmptyMVar
forkIO (do let res = quickCheck qm nGoal
putMVar mVar res)
res <- takeMVar mVar
return (ATPSuccess,res)
Just t -> watchdogIO t $ return $ quickCheck qm nGoal
let fstr = show(printTheoryFormula(AS_Anno.mapNamed
(simplifySen dummyMin dummy (sign qm)) nGoal))
++ "\n"
showDiagStrings = concat . intersperse "\n" . map diagString
diagstr = case (res,d) of
(Just True,_) -> showDiagStrings(take 10 d)
(_,[]) -> ""
_ -> "Formula failed: \n" ++ fstr ++
" some Counterexamples: \n"
++ showDiagStrings(take 10 d)
gstat = case res of
Just True -> Proved Nothing
Just False -> Disproved
Nothing -> Open
setStatus pstat = pstat { goalStatus = gstat,
proverName = "QuickCheck",
proofTree = Q_ProofTree diagstr }
cfg' = cfg { proof_status = setStatus (proof_status cfg),
resultOutput = [diagstr] }
return (stat, cfg')
-- return ATPError if time is up???
watchdogIO :: (Monad m) =>
Int -> IO (m a) -> IO (ATPRetval, m a)
watchdogIO time process = do
mvar <- newEmptyMVar
tid1 <- forkIO $ do x <- process
putMVar mvar (Just x)
tid2 <- forkIO $ do threadDelay (time * 1000000)
putMVar mvar Nothing
res <- takeMVar mvar
case res of
Just x -> do
killThread tid2 `catch` (\e -> putStrLn (show e))
return (ATPSuccess,x)
Nothing -> do
killThread tid1 `catch` (\e -> putStrLn (show e))
return (ATPTLimitExceeded,fail "time limit exceeded")
-- * QModels
-- | initial QModel
makeQm :: CASLSign -> QModel
makeQm sig = QModel { sign = sig,
carrierSens = Map.empty,
predDefs = Map.empty,
opDefs = Map.empty,
evaluatedPreds = [],
evaluatedOps = []
}
-- | insert sentences into a QModel
insertSen :: QModel -> AS_Anno.Named CASLFORMULA -> QModel
insertSens :: QModel -> [AS_Anno.Named CASLFORMULA] -> QModel
insertSens = foldl insertSen
insertSen qm sen =
if not $ AS_Anno.isAxiom sen then qm else
let f = AS_Anno.sentence sen
qm1 = case f of
-- sort generation constraint?
Sort_gen_ax cs _ ->
let s = zip (map newSort cs) (map (const [f]) [1..length cs])
ins = foldr $ uncurry $ Map.insertWith (++)
in qm { carrierSens = ins (carrierSens qm) s }
-- axiom forcing empty carrier?
Quantification Universal [Var_decl [_] s _] (False_atom _) _ ->
qm { carrierSens = Map.insertWith (++) s [f] (carrierSens qm) }
_ -> qm
insertPred p args body q =
q { predDefs = Map.insertWith (++) p [(args,body)] (predDefs q)}
insertOp op args body q =
q { opDefs = Map.insertWith (++) op [(args,body)] (opDefs q) }
in case stripAllQuant f of
-- insert a predicate or operation definition into a QModel
Predication predsymb args _ ->
insertPred predsymb args (True_atom nullRange) qm1
Negation (Predication predsymb args _) _ ->
insertPred predsymb args (False_atom nullRange) qm1
Equivalence (Predication predsymb args _) body _ ->
insertPred predsymb args body qm1
Strong_equation (Application opsymb args _) body _ ->
insertOp opsymb args body qm1
Existl_equation (Application opsymb args _) body _ ->
insertOp opsymb args body qm1
-- treat equality as special predicate symbol, for detecting inequalities
-- also exploit that inequality is symmetric
Negation (Strong_equation t1 t2 _) _ ->
insertPred eqSymb [t1,t2] (False_atom nullRange) $
insertPred eqSymb [t2,t1] (False_atom nullRange) qm1
Negation (Existl_equation t1 t2 _) _ ->
insertPred eqSymb [t1,t2] (False_atom nullRange) $
insertPred eqSymb [t2,t1] (False_atom nullRange) qm1
_ -> qm1
-- | predicate symbol for equality (with dummy type)
eqSymb :: PRED_SYMB
eqSymb = Qual_pred_name eqId (Pred_type [] nullRange) nullRange
----------------------------------------------------------------------------
-- * Variable assignments
data VARIABLE_ASSIGNMENT =
Variable_Assignment QModel [(VAR, CASLTERM)] deriving Eq
instance Show VARIABLE_ASSIGNMENT where
show (Variable_Assignment qm assignList) = showAssignments qm assignList
showAssignments :: QModel -> [(VAR, CASLTERM)] -> String
showAssignments qm xs =
"["++ concat (intersperse ", " $ map (showSingleAssignment qm) xs) ++"]"
showSingleAssignment :: QModel -> (VAR, CASLTERM) -> String
showSingleAssignment qm (v, t) =
let st = rmTypesT dummyMin dummy (sign qm) t
in show v ++ "->" ++ showDoc st ""
emptyAssignment :: QModel -> VARIABLE_ASSIGNMENT
emptyAssignment qm = Variable_Assignment qm []
insertAssignment :: VARIABLE_ASSIGNMENT -> (VAR, CASLTERM)
-> VARIABLE_ASSIGNMENT
insertAssignment (Variable_Assignment qm ass) (v,t) =
Variable_Assignment qm ((v,t):ass)
concatAssignment :: VARIABLE_ASSIGNMENT -> VARIABLE_ASSIGNMENT
-> VARIABLE_ASSIGNMENT
concatAssignment (Variable_Assignment qm l1) (Variable_Assignment _ l2) =
Variable_Assignment qm $ l1 ++ l2
--------------------------------------------------------------------------
-- * The quickcheck model checker
quickCheck :: QModel -> AS_Anno.Named CASLFORMULA -> Result Bool
quickCheck qm nSen =
calculateFormula True qm (emptyAssignment qm) $ AS_Anno.sentence nSen
-- needed for instance Monad (Either ([Diagnosis], Maybe a))
-- in calculateQuantification
instance Error ([Diagnosis], Maybe a) where
noMsg = ([], Nothing)
strMsg x = ([Diag Error x nullRange], Nothing)
calculateTerm :: QModel -> VARIABLE_ASSIGNMENT -> CASLTERM -> Result CASLTERM
calculateTerm qm ass trm = case trm of
Simple_id var -> lookupVar var ass
Qual_var var _ _ -> lookupVar var ass
Application opSymb terms _ ->
applyOperation qm ass opSymb terms
Sorted_term term _ _ -> calculateTerm qm ass term
Cast _ _ _ -> error "Cast not implemented"
Conditional t1 fo t2 _ -> do
res <- calculateFormula False qm ass fo
if res then calculateTerm qm ass t1
else calculateTerm qm ass t2
_ -> fail "unsopprted term"
lookupVar :: VAR -> VARIABLE_ASSIGNMENT -> Result CASLTERM
lookupVar v (Variable_Assignment _ ass) = case lookup v ass of
Nothing -> fail ("no value for variable "++show v++" found")
Just val -> return val
applyOperation :: QModel -> VARIABLE_ASSIGNMENT -> OP_SYMB -> [CASLTERM]
-> Result CASLTERM
applyOperation qm ass opsymb terms = do
-- block infinite recursion
when ((opsymb,terms) `elem` evaluatedOps qm)
(fail ("infinite recursion when calculating"++
show (Application opsymb terms nullRange)))
let qm' = qm { evaluatedOps = (opsymb,terms):evaluatedOps qm }
-- evaluate argument terms
args <- mapM (calculateTerm qm' ass) terms
-- find appropriate operation definition
case Map.lookup opsymb (opDefs qm) of
Nothing ->
-- no operation definition? Then return unevaluated term
return (Application opsymb terms nullRange)
Just bodies -> do
-- bind formal to actual arguments
(body,m) <- match bodies args $
showDoc (Application opsymb args nullRange) ""
let ass' = foldl insertAssignment ass m
-- evaluate body of operation definition
calculateTerm qm' ass' body
-- | match a list of arguments (second parameter) against a
-- a a list of bodies (first argument), each coming with a
-- list of formal parameters and a body term or formula
match :: [([CASLTERM],a)] -> [CASLTERM] -> String
-> Result (a,[(VAR,CASLTERM)])
match bodies args msg =
case mapMaybe (match1 args) bodies of
[] -> fail ("no matching found for "++msg)
(subst:_) -> return subst
-- match against a single body
match1 :: [CASLTERM] -> ([CASLTERM],a) -> Maybe (a,[(VAR,CASLTERM)])
match1 args (vars,body) = do
substs <- mapM (uncurry match2) (zip vars args)
let subst = concat substs
if consistent subst then return (body,subst) else Nothing
match2 :: CASLTERM -> CASLTERM -> Maybe [(VAR,CASLTERM)]
match2 (Qual_var v _ _) t = Just [(v,t)]
match2 (Simple_id v) t = Just [(v,t)]
match2 (Application opsymb1 terms1 _) (Application opsymb2 terms2 _) = do
-- direct match of operation symbols?
if (opsymb1 == opsymb2) then do
substs <- mapM (uncurry match2) (zip terms1 terms2)
return (concat substs)
-- if not, try to exploit overloading relation
else do
let (opsymb1',terms1',w1) = stripInj opsymb1 terms1
(opsymb2',terms2',w2) = stripInj opsymb2 terms2
when (opSymbName opsymb1' /= opSymbName opsymb2' || w1 /= w2) Nothing
substs <- mapM (uncurry match2) (zip terms1' terms2')
return (concat substs)
match2 (Sorted_term t1 _ _) t2 = match2 t1 t2
match2 t1 (Sorted_term t2 _ _) = match2 t1 t2
match2 _ _ = Nothing
-- | test whether an operation symbol is an injection
isInjection :: OP_SYMB -> Bool
isInjection opsymb = take 7 (show (opSymbName opsymb)) == "gn_inj_"
-- | strip off the injections of an application
stripInj :: OP_SYMB -> [CASLTERM] -> (OP_SYMB,[CASLTERM],[SORT])
stripInj opsymb terms =
let (opsymb',terms') =
case (isInjection opsymb, terms) of
(True,[Application o ts _]) -> (o,ts)
_ -> (opsymb,terms)
strip1 t1@(Application o [t2] _) =
if isInjection o then t2 else t1
strip1 t1 = t1
terms'' = map strip1 terms'
in (opsymb',terms'',map sortOfTerm terms'')
-- | is a substitution consistent with itself?
consistent :: [(VAR,CASLTERM)] -> Bool
consistent ass =
isJust $ foldM insertAss Map.empty ass
where
insertAss m (v,t) =
case Map.lookup v m of
Just t1 -> if t==t1 then return m else Nothing
Nothing -> Just $ Map.insert v t m
ternaryAnd :: (Result Bool,a) -> (Result Bool,a) -> (Result Bool,a)
ternaryAnd b1@(Result _ (Just False),_) _ = b1
ternaryAnd (Result d1 (Just True),_) (b2,x2) =
(do Result d1 (Just ()); b2, x2)
ternaryAnd (Result d1 Nothing,_) (b2@(Result _ (Just False)),x2) =
(do Result d1 (Just ()); b2, x2)
ternaryAnd (Result d1 Nothing,_) (b2,x2) =
(do Result d1 (Just ()); b2; Result [] Nothing, x2)
ternaryOr :: Result Bool -> Result Bool -> Result Bool
ternaryOr b1@(Result _ (Just True)) _ = b1
ternaryOr (Result d1 (Just False)) b2 = do Result d1 (Just ()); b2
ternaryOr (Result d1 Nothing) b2@(Result _ (Just True)) =
do Result d1 (Just ()); b2
ternaryOr (Result d1 Nothing) b2 =
do Result d1 (Just ()); b2; Result [] Nothing
calculateFormula :: Bool -> QModel -> VARIABLE_ASSIGNMENT
-> CASLFORMULA -> Result Bool
calculateFormula isOuter qm varass f = case f of
Quantification _ _ _ _ ->
calculateQuantification isOuter qm varass f
Conjunction formulas _ -> do
let (res,f1) =
foldl ternaryAnd (return True,f)
(zip (map (calculateFormula False qm varass) formulas) formulas)
when isOuter
(case res of Result _ (Just False) ->
(warning () ("Conjunction not fulfilled\n"
++"Formula that failed: "++showDoc f1 "") nullRange)
_ -> return ()
)
res
Disjunction formulas _ -> do
foldl ternaryOr (return False)
(map (calculateFormula False qm varass) formulas)
Implication f1 f2 _ _ -> do
ternaryOr (fmap not (calculateFormula False qm varass f1))
(calculateFormula False qm varass f2)
Equivalence f1 f2 _ -> do
res1 <- calculateFormula False qm varass f1
res2 <- calculateFormula False qm varass f2
return (res1 == res2)
Negation f1 _ -> do
res <- calculateFormula False qm varass f1
return (not res)
True_atom _ -> return True
False_atom _ -> return False
Strong_equation term1 term2 _ -> do
t1 <- calculateTerm qm varass term1
t2 <- calculateTerm qm varass term2
equalElements qm t1 t2
Existl_equation term1 term2 _ -> do
t1 <- calculateTerm qm varass term1
t2 <- calculateTerm qm varass term2
equalElements qm t1 t2
Predication predsymb terms _ ->
applyPredicate qm varass predsymb terms
_ -> fail $ "formula evaluation not implemented for: " ++ showDoc f ""
calculateQuantification :: Bool -> QModel -> VARIABLE_ASSIGNMENT -> CASLFORMULA
-> Result Bool
calculateQuantification isOuter qm varass qf = case qf of
Quantification quant vardecls f _ -> do
assments <- generateVariableAssignments qm vardecls
let assments' = map (\ x -> concatAssignment x varass) assments
case quant of
Universal -> do
let resList = map (flip (calculateFormula False qm) f) assments'
(res,fass) = foldl ternaryAnd (return True,emptyAssignment qm)
(zip resList assments')
when isOuter
(case res of Result _ (Just False) ->
(warning () ("Universal quantification not fulfilled\n"
++"Conuterexample: "++show fass) nullRange)
_ -> return ()
)
res
Existential ->
foldl ternaryOr (return False)
(map (flip (calculateFormula False qm) f) assments')
Unique_existential -> do
-- scan the assingments, stop scanning once the result is clear,
-- using the Left constructor of the Either monad
let combineEx1 (msgsSoFar,ass1) ass2 = do
let Result msgs res = calculateFormula False qm ass2 f
case (res,ass1) of
-- the first fulfilment
(Just True,Nothing) -> return (msgsSoFar++msgs, Just ass2)
-- the second fulfilment
(Just True,Just ass1') ->
Left (msgsSoFar++msgs,Just(ass1',ass2))
-- not fulfilled? Then nothing changes
(Just False,_) -> return (msgsSoFar++msgs,ass1)
-- don't know? Then we don't know either
(Nothing,_) -> Left(msgsSoFar++msgs,Nothing)
case foldM combineEx1 ([],Nothing) assments' of
Right (msgs,Just _) -> Result msgs (Just True)
Right (msgs,Nothing) -> do
Result msgs (Just ())
when isOuter
(warning () ("Unique Existential quantification"
++" not fulfilled: no assignment found") nullRange)
return False
Left (msgs,Just(ass1,ass2)) -> do
Result msgs (Just ())
when isOuter
(warning () ("Unique Existential quantification"
++" not fulfilled: at least two assignments found:\n"
++show ass1++"\n"++show ass2++"\n") nullRange)
return False
Left (msgs,Nothing) -> do
Result msgs Nothing
_ -> fail "calculateQuantification wrongly applied"
applyPredicate :: QModel -> VARIABLE_ASSIGNMENT -> PRED_SYMB -> [CASLTERM]
-> Result Bool
applyPredicate qm ass predsymb terms = do
-- block infinite recursion
when ((predsymb,terms) `elem` evaluatedPreds qm)
(fail ("infinite recursion when calculating"++
show (Predication predsymb terms nullRange)))
let qm' = qm { evaluatedPreds = (predsymb,terms):evaluatedPreds qm }
-- evaluate argument terms
args <- mapM (calculateTerm qm' ass) terms
-- find appropriate predicate definition
case Map.lookup predsymb (predDefs qm) of
Nothing -> fail ("no predicate definition for "++showDoc predsymb "")
Just bodies -> do
-- bind formal to actual arguments
(body,m) <- match bodies args $
showDoc (Predication predsymb args nullRange) ""
let ass' = foldl insertAssignment ass m
-- evaluate body of predicate definition
calculateFormula False qm' ass' body
equalElements :: QModel -> CASLTERM -> CASLTERM -> Result Bool
equalElements qm t1 t2 =
if t1==t2 then return True
else applyPredicate qm (emptyAssignment qm) eqSymb [t1,t2]
getVars:: [VAR_DECL] -> [(VAR,SORT)]
getVars = concatMap getVarsAtomic
getVarsAtomic:: VAR_DECL -> [(VAR,SORT)]
getVarsAtomic (Var_decl vars s _) = zip vars (map (const s) [1..length vars])
generateVariableAssignments :: QModel -> [VAR_DECL]
-> Result [VARIABLE_ASSIGNMENT]
generateVariableAssignments qm vardecls = do
let vars = getVars vardecls
carriers <- mapM (getCarrier qm) (map snd vars)
let varsCarriers = zip (map fst vars) carriers
return $ map (Variable_Assignment qm) (gVAs varsCarriers)
gVAs :: [(VAR,[CASLTERM])] -> [[(VAR, CASLTERM)]]
gVAs [] = [[]]
gVAs ((v,carrier) : vs) = let
rs = gVAs vs
fs = map (\ b -> (v, b)) carrier
in [f : r | f <- fs, r <- rs]
-- | check whether some formula leads to term generation of a sort
termSort :: CASLFORMULA -> Maybe (SORT,[CASLTERM])
-- sort generation constraint
termSort (Sort_gen_ax constr _) =
case sorts of
-- at the moment, we only treat one-sort constraints with constants
[s] -> if all constant ops
then Just (s,map mkTerm ops)
else Nothing
_ -> Nothing
where (sorts,ops,_) = recover_Sort_gen_ax constr
constant (Qual_op_name _ (Op_type _ [] _ _) _) = True
constant _ = False
mkTerm op = Application op [] nullRange
-- axiom forcing empty carrier
termSort (Quantification Universal [Var_decl [_] s _] (False_atom _) _) =
Just (s,[])
termSort _ = Nothing
-- | get the carrier set for a specific sort
getCarrier:: QModel -> SORT -> Result [CASLTERM]
getCarrier qm s =
case Map.lookup s (carrierSens qm) of
Nothing -> fail ("sort "++show s++" is not generated")
Just sens -> case mapMaybe termSort sens of
[] -> fail ("sort "++show s++" is not generated by constants")
(_,terms):_ -> return terms
-- todo: generalise this
----------------------------------------------------------------------------
-- * Interfacing to Hets prover interface
{- | The Prover implementation. First runs the batch prover (with
graphical feedback), then starts the GUI prover. -}
quickCheckProver :: Prover CASLSign CASLFORMULA CASL_Sublogics Q_ProofTree
quickCheckProver =
(mkProverTemplate "QuickCheck"
(SL.cFol {has_empty_sorts = True})
quickCheckGUI)
{ proveCMDLautomatic = Just quickCheckCMDLautomatic
, proveCMDLautomaticBatch = Just quickCheckCMDLautomaticBatch }
{- |
Record for prover specific functions. This is used by both GUI and command
line interface.
-}
atpFun :: String -- ^ theory name
-> ATPFunctions CASLSign CASLFORMULA Q_ProofTree QModel
atpFun _thName = ATPFunctions
{ initialProverState = \ sig sens -> insertSens (makeQm sig) sens,
atpTransSenName = id,
atpInsertSentence = insertSen,
goalOutput = \_ _ _ -> do
putStrLn "No display of output yet"
return "",
proverHelpText =
"QuickCheck tries to evaluate sentences in term generated models. " ++
"This only works if your theory contains enough generated or " ++
"freely generated datatypes.",
batchTimeEnv = "HETS_SPASS_BATCH_TIME_LIMIT",
fileExtensions = FileExtensions{problemOutput = ".none1",
proverOutput = ".none2",
theoryConfiguration = ".none3"},
runProver = runQuickCheck,
createProverOptions = \_ -> []}
-- ** GUI
{- |
Invokes the generic prover GUI. SPASS specific functions are omitted by
data type ATPFunctions.
-}
quickCheckGUI :: String -- ^ theory name
-> Theory CASLSign CASLFORMULA Q_ProofTree
-- ^ theory consisting of a signature
-- and a list of named sentences
-> IO([Proof_status Q_ProofTree]) -- ^ proof status for each goal
quickCheckGUI thName th = genericATPgui (atpFun thName) True
(prover_name quickCheckProver) thName th $ Q_ProofTree ""
-- ** command line functions
{- |
Implementation of 'Logic.Prover.proveCMDLautomatic' which provides an
automatic command line interface for a single goal.
QuickCheck specific functions are omitted by data type ATPFunctions.
-}
quickCheckCMDLautomatic ::
String -- ^ theory name
-> Tactic_script -- ^ default tactic script
-> Theory CASLSign CASLFORMULA Q_ProofTree
-- ^ theory consisting of a signature and a list of Named sentence
-> IO (Result.Result ([Proof_status Q_ProofTree]))
-- ^ Proof status for goals and lemmas
quickCheckCMDLautomatic thName defTS th =
genericCMDLautomatic (atpFun thName) (prover_name quickCheckProver) thName
(parseTactic_script batchTimeLimit [] defTS) th (Q_ProofTree "")
{- |
Implementation of 'Logic.Prover.proveCMDLautomaticBatch' which provides an
automatic command line interface to the QuickCheck prover via MathServe.
QuickCheck specific functions are omitted by data type ATPFunctions.
-}
quickCheckCMDLautomaticBatch ::
Bool -- ^ True means include proved theorems
-> Bool -- ^ True means save problem file
-> MVar (Result.Result [Proof_status Q_ProofTree])
-- ^ used to store the result of the batch run
-> String -- ^ theory name
-> Tactic_script -- ^ default tactic script
-> Theory CASLSign CASLFORMULA Q_ProofTree -- ^ theory consisting of a
-- signature and a list of named sentences
-> IO (ThreadId,MVar ())
-- ^ fst: identifier of the batch thread for killing it
-- snd: MVar to wait for the end of the thread
quickCheckCMDLautomaticBatch inclProvedThs saveProblem_batch resultMVar
thName defTS th =
genericCMDLautomaticBatch (atpFun thName) inclProvedThs saveProblem_batch
resultMVar (prover_name quickCheckProver) thName
(parseTactic_script batchTimeLimit [] defTS) th (Q_ProofTree "")