Cross Reference: /hets/CASL/Morphism.hs
Morphism.hs revision 831bfb0c3598d0508b976cd36fa97c65839ed5a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
{- |
Module : $Header$
Copyright : (c) Christian Maeder, Till Mossakowski and Uni Bremen 2002-2004
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : provisional
Portability : portable
Symbols and signature morphisms for the CASL logic
-}
{-
todo:
issue warning for symbols lists like __ * __, __ + __: Elem * Elem -> Elem
the qualification only applies to __+__ !
possibly reuse SYMB_KIND for Kind
-}
module CASL.Morphism where
import CASL.Sign
import CASL.AS_Basic_CASL
import Common.Id
import Common.Result
import Common.Keywords
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import qualified Common.Lib.Rel as Rel
import Control.Monad
import Common.PrettyPrint
import Control.Exception (assert)
import Common.Doc
import Common.DocUtils
import Common.Print_AS_Annotation
data SymbType = OpAsItemType OpType
-- since symbols do not speak about totality, the totality
-- information in OpType has to be ignored
| PredAsItemType PredType
| SortAsItemType
deriving (Show)
-- Ordering and equality of symbol types has to ingore totality information
instance Ord SymbType where
compare (OpAsItemType ot1) (OpAsItemType ot2) =
compare (opArgs ot1,opRes ot1) (opArgs ot2,opRes ot2)
compare (OpAsItemType _) _ = LT
compare (PredAsItemType pt1) (PredAsItemType pt2) =
compare pt1 pt2
compare (PredAsItemType _) (OpAsItemType _) = GT
compare (PredAsItemType _) SortAsItemType = LT
compare SortAsItemType SortAsItemType = EQ
compare SortAsItemType _ = GT
instance Eq SymbType where
t1 == t2 = compare t1 t2 == EQ
data Symbol = Symbol {symName :: Id, symbType :: SymbType}
deriving (Show, Eq, Ord)
instance PosItem Symbol where
getRange = getRange . symName
type SymbolSet = Set.Set Symbol
type SymbolMap = Map.Map Symbol Symbol
data RawSymbol = ASymbol Symbol | AnID Id | AKindedId Kind Id
deriving (Show, Eq, Ord)
instance PosItem RawSymbol where
getRange rs =
case rs of
ASymbol s -> getRange s
AnID i -> getRange i
AKindedId _ i -> getRange i
type RawSymbolSet = Set.Set RawSymbol
type RawSymbolMap = Map.Map RawSymbol RawSymbol
data Kind = SortKind | FunKind | PredKind
deriving (Show, Eq, Ord)
type Sort_map = Map.Map SORT SORT
-- allways use the partial profile as key!
type Fun_map = Map.Map (Id,OpType) (Id, FunKind)
type Pred_map = Map.Map (Id,PredType) Id
data Morphism f e m = Morphism {msource :: Sign f e,
mtarget :: Sign f e,
sort_map :: Sort_map,
fun_map :: Fun_map,
pred_map :: Pred_map,
extended_map :: m}
deriving (Eq, Show)
mapSort :: Sort_map -> SORT -> SORT
mapSort sorts s = Map.findWithDefault s s sorts
mapOpType :: Sort_map -> OpType -> OpType
mapOpType sorts t = if Map.null sorts then t else
t { opArgs = map (mapSort sorts) $ opArgs t
, opRes = mapSort sorts $ opRes t }
mapOpTypeK :: Sort_map -> FunKind -> OpType -> OpType
mapOpTypeK sorts k t = makeTotal k $ mapOpType sorts t
makeTotal :: FunKind -> OpType -> OpType
makeTotal Total t = t { opKind = Total }
makeTotal _ t = t
mapOpSym :: Sort_map -> Fun_map -> (Id, OpType) -> (Id, OpType)
mapOpSym sMap fMap (i, ot) =
let mot = mapOpType sMap ot in
case Map.lookup (i, ot {opKind = Partial} ) fMap of
Nothing -> (i, mot)
Just (j, k) -> (j, makeTotal k mot)
-- | Check if two OpTypes are equal modulo totality or partiality
compatibleOpTypes :: OpType -> OpType -> Bool
compatibleOpTypes ot1 ot2 = opArgs ot1 == opArgs ot2 && opRes ot1 == opRes ot2
mapPredType :: Sort_map -> PredType -> PredType
mapPredType sorts t = if Map.null sorts then t else
t { predArgs = map (mapSort sorts) $ predArgs t }
mapPredSym :: Sort_map -> Pred_map -> (Id, PredType) -> (Id, PredType)
mapPredSym sMap fMap (i, pt) =
(Map.findWithDefault i (i, pt) fMap, mapPredType sMap pt)
type Ext f e m = Sign f e -> Sign f e -> m
embedMorphism :: Ext f e m -> Sign f e -> Sign f e -> Morphism f e m
embedMorphism extEm a b =
Morphism
{ msource = a
, mtarget = b
, sort_map = Map.empty
, fun_map = Map.empty
, pred_map = Map.empty
, extended_map = extEm a b
}
idToSortSymbol :: Id -> Symbol
idToSortSymbol idt = Symbol idt SortAsItemType
idToOpSymbol :: Id -> OpType -> Symbol
idToOpSymbol idt typ = Symbol idt (OpAsItemType typ)
idToPredSymbol :: Id -> PredType -> Symbol
idToPredSymbol idt typ = Symbol idt (PredAsItemType typ)
symbTypeToKind :: SymbType -> Kind
symbTypeToKind (OpAsItemType _) = FunKind
symbTypeToKind (PredAsItemType _) = PredKind
symbTypeToKind SortAsItemType = SortKind
symbolToRaw :: Symbol -> RawSymbol
symbolToRaw sym = ASymbol sym
idToRaw :: Id -> RawSymbol
idToRaw x = AnID x
rawSymName :: RawSymbol -> Id
rawSymName (ASymbol sym) = symName sym
rawSymName (AnID i) = i
rawSymName (AKindedId _ i) = i
symOf :: Sign f e -> SymbolSet
symOf sigma =
let sorts = Set.map idToSortSymbol $ sortSet sigma
ops = Set.fromList $
concatMap (\ (i, ts) -> map ( \ t -> idToOpSymbol i t)
$ Set.toList ts) $
Map.toList $ opMap sigma
preds = Set.fromList $
concatMap (\ (i, ts) -> map ( \ t -> idToPredSymbol i t)
$ Set.toList ts) $
Map.toList $ predMap sigma
in Set.unions [sorts, ops, preds]
statSymbMapItems :: [SYMB_MAP_ITEMS] -> Result RawSymbolMap
statSymbMapItems sl = do
ls <- sequence $ map s1 sl
foldl insertRsys (return Map.empty) (concat ls)
where
s1 (Symb_map_items kind l _) = sequence (map (symbOrMapToRaw kind) l)
insertRsys m (rsy1,rsy2) = do
m1 <- m
case Map.lookup rsy1 m1 of
Nothing -> return $ Map.insert rsy1 rsy2 m1
Just rsy3 ->
plain_error m1 ("Symbol " ++ showPretty rsy1 " mapped twice to "
++ showPretty rsy2 " and " ++ showPretty rsy3 "") nullRange
pairM :: Monad m => (m a,m b) -> m (a,b)
pairM (x,y) = do
a <- x
b <- y
return (a,b)
symbOrMapToRaw :: SYMB_KIND -> SYMB_OR_MAP -> Result (RawSymbol,RawSymbol)
symbOrMapToRaw k (Symb s) = pairM (symbToRaw k s,symbToRaw k s)
symbOrMapToRaw k (Symb_map s t _) = pairM (symbToRaw k s,symbToRaw k t)
statSymbItems :: [SYMB_ITEMS] -> Result [RawSymbol]
statSymbItems sl =
fmap concat (sequence (map s1 sl))
where s1 (Symb_items kind l _) = sequence (map (symbToRaw kind) l)
symbToRaw :: SYMB_KIND -> SYMB -> Result RawSymbol
symbToRaw k (Symb_id idt) = return $ symbKindToRaw k idt
symbToRaw k (Qual_id idt t _) = typedSymbKindToRaw k idt t
symbKindToRaw :: SYMB_KIND -> Id -> RawSymbol
symbKindToRaw sk idt = case sk of
Implicit -> AnID idt
_ -> AKindedId (case sk of
Sorts_kind -> SortKind
Preds_kind -> PredKind
_ -> FunKind) idt
typedSymbKindToRaw :: SYMB_KIND -> Id -> TYPE -> Result RawSymbol
typedSymbKindToRaw k idt t =
let err = plain_error (AnID idt)
(showPretty idt ":" ++ showPretty t
"does not have kind" ++ showPretty k "") nullRange
aSymb = ASymbol $ case t of
O_type ot -> idToOpSymbol idt $ toOpType ot
P_type pt -> idToPredSymbol idt $ toPredType pt
-- in case of ambiguity, return a constant function type
-- this deviates from the CASL summary !!!
A_type s ->
let ot = OpType {opKind = Total, opArgs = [], opRes = s}
in idToOpSymbol idt ot
in case k of
Implicit -> return aSymb
Sorts_kind -> return $ AKindedId SortKind idt
Ops_kind -> case t of
P_type _ -> err
_ -> return aSymb
Preds_kind -> case t of
O_type _ -> err
A_type s -> return $ ASymbol $
let pt = PredType {predArgs = [s]}
in idToPredSymbol idt pt
P_type _ -> return aSymb
symbMapToMorphism :: Ext f e m -> Sign f e -> Sign f e
-> SymbolMap -> Result (Morphism f e m)
symbMapToMorphism extEm sigma1 sigma2 smap = let
sort_map1 = Set.fold mapMSort Map.empty (sortSet sigma1)
mapMSort s m =
case Map.lookup (Symbol {symName = s, symbType = SortAsItemType}) smap
of Just sym -> let t = symName sym in if s == t then m else
Map.insert s t m
Nothing -> m
fun_map1 = Map.foldWithKey mapFun Map.empty (opMap sigma1)
pred_map1 = Map.foldWithKey mapPred Map.empty (predMap sigma1)
mapFun i ots m = Set.fold (insFun i) m ots
insFun i ot m =
case Map.lookup (Symbol {symName = i, symbType = OpAsItemType ot}) smap
of Just sym -> let j = symName sym in case symbType sym of
OpAsItemType oty -> let k = opKind oty in
if j == i && opKind ot == k then m
else Map.insert (i, ot {opKind = Partial}) (j, k) m
_ -> m
_ -> m
mapPred i pts m = Set.fold (insPred i) m pts
insPred i pt m =
case Map.lookup (Symbol {symName = i, symbType = PredAsItemType pt}) smap
of Just sym -> let j = symName sym in case symbType sym of
PredAsItemType _ -> if i == j then m else Map.insert (i, pt) j m
_ -> m
_ -> m
in return (Morphism { msource = sigma1,
mtarget = sigma2,
sort_map = sort_map1,
fun_map = fun_map1,
pred_map = pred_map1,
extended_map = extEm sigma1 sigma2})
morphismToSymbMap :: Morphism f e m -> SymbolMap
morphismToSymbMap mor =
let
src = msource mor
sorts = sort_map mor
ops = fun_map mor
preds = pred_map mor
sortSymMap = Set.fold ( \ s -> Map.insert (idToSortSymbol s) $
idToSortSymbol $ mapSort sorts s)
Map.empty $ sortSet src
opSymMap = Map.foldWithKey
( \ i s m -> Set.fold
( \ t -> Map.insert (idToOpSymbol i t)
$ uncurry idToOpSymbol $ mapOpSym sorts ops (i, t)) m s)
Map.empty $ opMap src
predSymMap = Map.foldWithKey
( \ i s m -> Set.fold
( \ t -> Map.insert (idToPredSymbol i t)
$ uncurry idToPredSymbol $ mapPredSym sorts preds (i, t)) m s)
Map.empty $ predMap src
in
foldr Map.union sortSymMap [opSymMap,predSymMap]
matches :: Symbol -> RawSymbol -> Bool
matches x@(Symbol idt k) rs = case rs of
ASymbol y -> x == y
AnID di -> idt == di
AKindedId rk di -> let res = idt == di in case (k, rk) of
(SortAsItemType, SortKind) -> res
(OpAsItemType _, FunKind) -> res
(PredAsItemType _, PredKind) -> res
_ -> False
idMor :: Ext f e m -> Sign f e -> Morphism f e m
idMor extEm sigma = embedMorphism extEm sigma sigma
compose :: (Eq e, Eq f) => (m -> m -> m)
-> Morphism f e m -> Morphism f e m -> Result (Morphism f e m)
compose comp mor1 mor2 = if mtarget mor1 == msource mor2 then return $
let sMap1 = sort_map mor1
src = msource mor1
tar = mtarget mor2
fMap1 = fun_map mor1
pMap1 = pred_map mor1
sMap2 = sort_map mor2
fMap2 = fun_map mor2
pMap2 = pred_map mor2
sMap = if Map.null sMap2 then sMap1 else
Set.fold ( \ i ->
let j = mapSort sMap2 (mapSort sMap1 i) in
if i == j then id else Map.insert i j)
Map.empty $ sortSet src
in
Morphism {
msource = src,
mtarget = tar,
sort_map = sMap,
fun_map = if Map.null fMap2 then fMap1 else
Map.foldWithKey ( \ i t m ->
Set.fold ( \ ot ->
let (ni, nt) = mapOpSym sMap2 fMap2 $
mapOpSym sMap1 fMap1 (i, ot)
k = opKind nt
in assert (mapOpTypeK sMap k ot == nt) $
if i == ni && opKind ot == k then id else
Map.insert (i, ot {opKind = Partial }) (ni, k)) m t)
Map.empty $ opMap src,
pred_map = if Map.null pMap2 then pMap1 else
Map.foldWithKey ( \ i t m ->
Set.fold ( \ pt ->
let (ni, nt) = mapPredSym sMap2 pMap2 $
mapPredSym sMap1 pMap1 (i, pt)
in assert (mapPredType sMap pt == nt) $
if i == ni then id else Map.insert (i, pt) ni) m t)
Map.empty $ predMap src,
extended_map = comp (extended_map mor1) (extended_map mor2)
}
else fail "target of first and source of second morphism are different"
legalSign :: Sign f e -> Bool
legalSign sigma =
Map.foldWithKey (\s sset b -> b && legalSort s && all legalSort
(Set.toList sset))
True (Rel.toMap (sortRel sigma))
&& Map.fold (\ts b -> b && all legalOpType (Set.toList ts))
True (opMap sigma)
&& Map.fold (\ts b -> b && all legalPredType (Set.toList ts))
True (predMap sigma)
where sorts = sortSet sigma
legalSort s = Set.member s sorts
legalOpType t = legalSort (opRes t)
&& all legalSort (opArgs t)
legalPredType t = all legalSort (predArgs t)
legalMor :: Morphism f e m -> Bool
legalMor mor =
let s1 = msource mor
s2 = mtarget mor
smap = sort_map mor
msorts = Set.map (mapSort smap) $ sortSet s1
mops = Map.foldWithKey ( \ i ->
flip $ Set.fold ( \ ot ->
let (j, nt) = mapOpSym smap (fun_map mor) (i, ot)
in Rel.setInsert j nt)) Map.empty $ opMap s1
mpreds = Map.foldWithKey ( \ i ->
flip $ Set.fold ( \ pt ->
let (j, nt) = mapPredSym smap (pred_map mor) (i, pt)
in Rel.setInsert j nt)) Map.empty $ predMap s1
in
legalSign s1
&& Set.isSubsetOf msorts (sortSet s2)
&& isSubOpMap mops (opMap s2)
&& isSubMapSet mpreds (predMap s2)
&& legalSign s2
sigInclusion :: (PrettyPrint e, PrettyPrint f)
=> Ext f e m -- ^ compute extended morphism
-> (e -> e -> Bool) -- ^ subsignature test of extensions
-> Sign f e -> Sign f e -> Result (Morphism f e m)
sigInclusion extEm isSubExt sigma1 sigma2 =
assert (isSubSig isSubExt sigma1 sigma2) $
return (embedMorphism extEm sigma1 sigma2)
morphismUnion :: (m -> m -> m) -- ^ join morphism extensions
-> (e -> e -> e) -- ^ join signature extensions
-> Morphism f e m -> Morphism f e m -> Result (Morphism f e m)
-- consider identity mappings but filter them eventually
morphismUnion uniteM addSigExt mor1 mor2 =
let smap1 = sort_map mor1
smap2 = sort_map mor2
s1 = msource mor1
s2 = msource mor2
us1 = Set.difference (sortSet s1) $ Rel.keysSet smap1
us2 = Set.difference (sortSet s2) $ Rel.keysSet smap2
omap1 = fun_map mor1
omap2 = fun_map mor2
uo1 = foldr delOp (opMap s1) $ Map.keys omap1
uo2 = foldr delOp (opMap s2) $ Map.keys omap2
delOp (n, ot) m = diffMapSet m $ Map.singleton n $
Set.fromList [ot {opKind = Partial}, ot {opKind =Total}]
uo = addMapSet uo1 uo2
pmap1 = pred_map mor1
pmap2 = pred_map mor2
up1 = foldr delPred (predMap s1) $ Map.keys pmap1
up2 = foldr delPred (predMap s2) $ Map.keys pmap2
up = addMapSet up1 up2
delPred (n, pt) m = diffMapSet m $ Map.singleton n $ Set.singleton pt
(sds, smap) = foldr ( \ (i, j) (ds, m) -> case Map.lookup i m of
Nothing -> (ds, Map.insert i j m)
Just k -> if j == k then (ds, m) else
(Diag Error
("incompatible mapping of sort " ++ showId i " to "
++ showId j " and " ++ showId k "")
nullRange : ds, m)) ([], smap1)
(Map.toList smap2 ++ map (\ a -> (a, a))
(Set.toList $ Set.union us1 us2))
(ods, omap) = foldr ( \ (isc@(i, ot), jsc@(j, t)) (ds, m) ->
case Map.lookup isc m of
Nothing -> (ds, Map.insert isc jsc m)
Just (k, p) -> if j == k then if p == t then (ds, m)
else (ds, Map.insert isc (j, Total) m) else
(Diag Error
("incompatible mapping of op " ++ showId i ":"
++ showPretty ot { opKind = t } " to "
++ showId j " and " ++ showId k "") nullRange : ds, m))
(sds, omap1) (Map.toList omap2 ++ concatMap
( \ (a, s) -> map ( \ ot -> ((a, ot {opKind = Partial}),
(a, opKind ot)))
$ Set.toList s) (Map.toList uo))
(pds, pmap) = foldr ( \ (isc@(i, pt), j) (ds, m) ->
case Map.lookup isc m of
Nothing -> (ds, Map.insert isc j m)
Just k -> if j == k then (ds, m) else
(Diag Error
("incompatible mapping of pred " ++ showId i ":"
++ showPretty pt " to " ++ showId j " and "
++ showId k "") nullRange : ds, m)) (ods, pmap1)
(Map.toList pmap2 ++ concatMap ( \ (a, s) -> map
( \ pt -> ((a, pt), a)) $ Set.toList s) (Map.toList up))
s3 = addSig addSigExt s1 s2
o3 = opMap s3 in
if null pds then Result [] $ Just Morphism
{ msource = s3,
mtarget = addSig addSigExt (mtarget mor1) $ mtarget mor2,
sort_map = Map.filterWithKey (/=) smap,
fun_map = Map.filterWithKey
(\ (i, ot) (j, k) -> i /= j || k == Total && Set.member ot
(Map.findWithDefault Set.empty i o3)) omap,
pred_map = Map.filterWithKey (\ (i, _) j -> i /= j) pmap,
extended_map = uniteM (extended_map mor1) $ extended_map mor2 }
else Result pds Nothing
isSortInjective :: Morphism f e m -> Bool
isSortInjective m =
null [() | k1 <- src, k2 <-src, k1 /= k2,
(Map.lookup k1 sm::Maybe SORT)==Map.lookup k2 sm]
where sm = sort_map m
src = Map.keys sm
instance PrettyPrint Symbol where
printText0 ga = toText ga . pretty
instance Pretty Symbol where
pretty sy = pretty (symName sy) <>
case symbType sy of
SortAsItemType -> empty
st -> space <> colon <> pretty st
instance PrettyPrint SymbType where
-- op types try to place a question mark immediately after a colon
printText0 ga = toText ga . pretty
instance Pretty SymbType where
pretty st = case st of
OpAsItemType ot -> pretty ot
PredAsItemType pt -> space <> pretty pt
SortAsItemType -> empty
instance PrettyPrint Kind where
printText0 ga = toText ga . pretty
instance Pretty Kind where
pretty k = keyword $ case k of
SortKind -> sortS
FunKind -> opS
PredKind -> predS
instance PrettyPrint RawSymbol where
printText0 ga = toText ga . pretty
instance Pretty RawSymbol where
pretty rsym = case rsym of
ASymbol sy -> pretty sy
AnID i -> pretty i
AKindedId k i -> pretty k <+> pretty i
instance (PrettyPrint e, PrettyPrint f, PrettyPrint m) =>
PrettyPrint (Morphism f e m) where
printText0 ga = toText ga .
printMorphism (fromText ga) (fromText ga) (fromText ga)
printMorphism :: (f->Doc) -> (e->Doc) -> (m->Doc) -> Morphism f e m -> Doc
printMorphism fF fE fM mor =
printSymbolMap (Map.filterWithKey (/=) $ morphismToSymbMap mor)
$+$ fM (extended_map mor) $+$ colon $+$
specBraces (space <> printSign fF fE (msource mor) <> space)
$+$ text funS $+$
specBraces (space <> printSign fF fE (mtarget mor) <> space)
instance (Pretty e, Pretty f, Pretty m) =>
Pretty (Morphism f e m) where
pretty = printMorphism pretty pretty pretty
printSymbolMap :: SymbolMap -> Doc
printSymbolMap = printMap specBraces (fsep . punctuate comma)
(\ a b -> a <+> mapsto <+> b)