Morphism.hs revision 656f17ae9b7610ff2de1b6eedeeadea0c3bcdc8d
{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies
, FlexibleInstances #-}
{- |
Module : $Header$
Description : Symbols and signature morphisms for the CASL logic
Copyright : (c) Christian Maeder, Till Mossakowski and Uni Bremen 2002-2004
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : non-portable (MPTC+FD)
Symbols and signature morphisms for the CASL logic
-}
module CASL.Morphism
( SymbolSet
, SymbolMap
, RawSymbol (..)
, Morphism (..)
, idMor
, legalMor
, DefMorExt (..)
, emptyMorExt
, MorphismExtension (..)
, retExtMap
, CASLMor
, isInclusionMorphism
, isSortInjective
, isInjective
, Sort_map
, Pred_map
, Op_map
, embedMorphism
, sigInclusion
, composeM
, plainMorphismUnion
, morphismUnion
, morphismUnionM
, idOrInclMorphism
, morphismToSymbMap
, symsetOf
, symOf
, sigSymsOf
, addSigM
, idToRaw
, typedSymbKindToRaw
, symbolToRaw
, insertRsys
, mapSort
, mapOpSym
, mapPredSym
, mapOpType
, mapPredType
, matches
, compatibleOpTypes
, imageOfMorphism
, RawSymbolMap
, InducedSign
, inducedSignAux
, rawSymName
, inducedOpMap
, inducedPredMap
, statSymbMapItems
, statSymbItems
) where
import CASL.Sign
import CASL.AS_Basic_CASL
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Common.Lib.MapSet as MapSet
import qualified Common.Lib.Rel as Rel
import Common.Doc
import Common.DocUtils
import Common.Id
import Common.Result
import Common.Utils (composeMap)
import Control.Monad
type SymbolSet = Set.Set Symbol
type SymbolMap = Map.Map Symbol Symbol
data RawSymbol = ASymbol Symbol | AKindedSymb SYMB_KIND Id
deriving (Show, Eq, Ord)
instance GetRange RawSymbol where
getRange rs = case rs of
ASymbol s -> getRange s
AKindedSymb _ i -> getRange i
type RawSymbolMap = Map.Map RawSymbol RawSymbol
type Sort_map = Map.Map SORT SORT
-- always use the partial profile as key!
type Op_map = Map.Map (Id, OpType) (Id, OpKind)
type Pred_map = Map.Map (Id, PredType) Id
data Morphism f e m = Morphism
{ msource :: Sign f e
, mtarget :: Sign f e
, sort_map :: Sort_map
, op_map :: Op_map
, pred_map :: Pred_map
, extended_map :: m
} deriving (Show, Eq, Ord)
data DefMorExt e = DefMorExt e
instance Show (DefMorExt e) where
show = const ""
instance Ord (DefMorExt e) where
compare _ = const EQ
instance Eq (DefMorExt e) where
(==) e = (== EQ) . compare e
emptyMorExt :: DefMorExt e
emptyMorExt = DefMorExt $ error "emptyMorExt"
instance Pretty (DefMorExt e) where
pretty _ = empty
class (Pretty e, Pretty m) => MorphismExtension e m | m -> e where
ideMorphismExtension :: e -> m
composeMorphismExtension :: Morphism f e m -> Morphism f e m -> Result m
inverseMorphismExtension :: Morphism f e m -> Result m
inverseMorphismExtension = return . extended_map
isInclusionMorphismExtension :: m -> Bool
prettyMorphismExtension :: Morphism f e m -> Doc
prettyMorphismExtension = pretty . extended_map
legalMorphismExtension :: Morphism f e m -> Result ()
legalMorphismExtension _ = return ()
instance MorphismExtension () () where
ideMorphismExtension _ = ()
composeMorphismExtension _ = return . extended_map
isInclusionMorphismExtension _ = True
instance Pretty e => MorphismExtension e (DefMorExt e) where
ideMorphismExtension _ = emptyMorExt
composeMorphismExtension _ = return . extended_map
isInclusionMorphismExtension _ = True
type CASLMor = Morphism () () ()
isInclusionMorphism :: (m -> Bool) -> Morphism f e m -> Bool
isInclusionMorphism f m = f (extended_map m) && Map.null (sort_map m)
&& Map.null (pred_map m) && isInclOpMap (op_map m)
mapSort :: Sort_map -> SORT -> SORT
mapSort sorts s = Map.findWithDefault s s sorts
mapOpType :: Sort_map -> OpType -> OpType
mapOpType sorts t = if Map.null sorts then t else
t { opArgs = map (mapSort sorts) $ opArgs t
, opRes = mapSort sorts $ opRes t }
makeTotal :: OpKind -> OpType -> OpType
makeTotal fk t = case fk of
Total -> mkTotal t
_ -> t
mapOpSym :: Sort_map -> Op_map -> (Id, OpType) -> (Id, OpType)
mapOpSym sMap oMap (i, ot) = let mot = mapOpType sMap ot in
case Map.lookup (i, mkPartial ot) oMap of
Nothing -> (i, mot)
Just (j, k) -> (j, makeTotal k mot)
-- | Check if two OpTypes are equal modulo totality or partiality
compatibleOpTypes :: OpType -> OpType -> Bool
compatibleOpTypes ot1 ot2 = opArgs ot1 == opArgs ot2 && opRes ot1 == opRes ot2
mapPredType :: Sort_map -> PredType -> PredType
mapPredType sorts t = if Map.null sorts then t else
t { predArgs = map (mapSort sorts) $ predArgs t }
mapPredSym :: Sort_map -> Pred_map -> (Id, PredType) -> (Id, PredType)
mapPredSym sMap oMap (i, pt) =
(Map.findWithDefault i (i, pt) oMap, mapPredType sMap pt)
embedMorphism :: m -> Sign f e -> Sign f e -> Morphism f e m
embedMorphism extEm a b = Morphism
{ msource = a
, mtarget = b
, sort_map = Map.empty
, op_map = Map.empty
, pred_map = Map.empty
, extended_map = extEm }
symbolToRaw :: Symbol -> RawSymbol
symbolToRaw = ASymbol
idToRaw :: Id -> RawSymbol
idToRaw = AKindedSymb Implicit
rawSymName :: RawSymbol -> Id
rawSymName rs = case rs of
ASymbol sym -> symName sym
AKindedSymb _ i -> i
sortSyms :: Sign f e -> SymbolSet
sortSyms = Set.map idToSortSymbol . sortSet
opSyms :: Sign f e -> [Symbol]
opSyms = map (uncurry idToOpSymbol) . mapSetToList . opMap
predSyms :: Sign f e -> [Symbol]
predSyms = map (uncurry idToPredSymbol) . mapSetToList . predMap
{- | returns the symbol sets of the signature in the correct dependency order
, i.e., sorts first, then ops and predicates. Result list is of length two. -}
symOf :: Sign f e -> [SymbolSet]
symOf s = [ sortSyms s, Set.fromList $ predSyms s ++ opSyms s ]
sigSymsOf :: Sign f e -> [Symbol]
sigSymsOf s = concat
[ Set.toList $ sortSyms s
, map (\ (a, b) -> Symbol a $ SubsortAsItemType b)
. Rel.toList . Rel.transReduce . Rel.irreflex $ sortRel s
-- assume sort relation to be the transitive closure
, opSyms s
, predSyms s ]
-- | set of symbols for a signature
symsetOf :: Sign f e -> SymbolSet
symsetOf = Set.unions . symOf
checkSymbList :: [SYMB_OR_MAP] -> [Diagnosis]
checkSymbList l = case l of
Symb (Symb_id a) : Symb (Qual_id b t _) : r -> mkDiag Warning
("profile '" ++ showDoc t "' does not apply to '"
++ showId a "' but only to") b : checkSymbList r
_ : r -> checkSymbList r
[] -> []
insertRsys :: (Pretty r, GetRange r, Ord r)
=> (r -> Id) -> (r -> Maybe Id) -> (Id -> r)
-> (r -> Maybe Id) -> (Id -> r) -> Map.Map r r -> (r, r)
-> Result (Map.Map r r)
insertRsys rawId getSort mkSort getImplicit mkImplicit m1 (rsy1, rsy2) =
let m3 = Map.insert rsy1 rsy2 m1 in
case Map.lookup rsy1 m1 of
Nothing -> case getSort rsy1 of
Just i ->
case Map.lookup (mkImplicit i) m1 of
Just r2 | Just (rawId rsy2) == getImplicit r2 ->
warning m1 ("ignoring separate mapping for sort " ++
show i) $ getRange i
_ -> return m3
Nothing -> case getImplicit rsy1 of
Just i -> let rsy3 = mkSort i in case Map.lookup rsy3 m1 of
Just r2 | Just (rawId rsy2) == getSort r2 ->
warning (Map.delete rsy3 m3)
("ignoring extra mapping of sort " ++
show i) $ getRange i
{- this case cannot occur, because unkinded names cannot
follow kinded ones:
in "sort s |-> t, o |-> q" "o" will be a sort, too. -}
_ -> return m3
_ -> return m3
Just rsy3 -> if rsy2 == rsy3 then
hint m1 ("ignoring duplicate mapping of "
++ showDoc rsy1 "") $ getRange rsy1 else
plain_error m1 ("Symbol " ++ showDoc rsy1 " mapped twice to "
++ showDoc rsy2 " and " ++ showDoc rsy3 "") nullRange
statSymbMapItems :: Sign f e -> Maybe (Sign f e) -> [SYMB_MAP_ITEMS]
-> Result RawSymbolMap
statSymbMapItems sig msig sl = do
let st (Symb_map_items kind l _) = do
appendDiags $ checkSymbList l
fmap concat $ mapM (symbOrMapToRaw sig msig kind) l
getSort rsy = case rsy of
ASymbol (Symbol i SortAsItemType) -> Just i
_ -> Nothing
getImplicit rsy = case rsy of
AKindedSymb Implicit i -> Just i
_ -> Nothing
mkSort i = ASymbol $ Symbol i SortAsItemType
mkImplicit = AKindedSymb Implicit
ls <- mapM st sl
foldM (insertRsys rawSymName getSort mkSort getImplicit mkImplicit)
Map.empty (concat ls)
symbOrMapToRaw :: Sign f e -> Maybe (Sign f e) -> SYMB_KIND -> SYMB_OR_MAP
-> Result [(RawSymbol, RawSymbol)]
symbOrMapToRaw sig msig k sm = case sm of
Symb s -> do
v <- symbToRaw True sig k s
return [(v, v)]
Symb_map s t _ -> do
appendDiags $ case (s, t) of
(Symb_id a, Symb_id b) | a == b ->
[mkDiag Hint "unneeded identical mapping of" a]
_ -> []
w <- symbToRaw True sig k s
x <- case msig of
Nothing -> symbToRaw False sig k t
Just tsig -> symbToRaw True tsig k t
let mkS = ASymbol . idToSortSymbol
case (s, t) of
(Qual_id _ t1 _, Qual_id _ t2 _) -> case (t1, t2) of
(O_type (Op_type _ args1 res1 _), O_type (Op_type _ args2 res2 _))
| length args1 == length args2 -> -- ignore partiality
return $ (w, x) : (mkS res1, mkS res2)
: zipWith (\ s1 s2 -> (mkS s1, mkS s2)) args1 args2
(P_type (Pred_type args1 _), P_type (Pred_type args2 _))
| length args1 == length args2 ->
return $ (w, x)
: zipWith (\ s1 s2 -> (mkS s1, mkS s2)) args1 args2
(O_type (Op_type _ [] res1 _), A_type s2) ->
return [(w, x), (mkS res1, mkS s2)]
(A_type s1, O_type (Op_type _ [] res2 _)) ->
return [(w, x), (mkS s1, mkS res2)]
(A_type s1, A_type s2) ->
return [(w, x), (mkS s1, mkS s2)]
_ -> fail $ "profiles '" ++ showDoc t1 "' and '"
++ showDoc t2 "' do not match"
_ -> return [(w, x)]
statSymbItems :: Sign f e -> [SYMB_ITEMS] -> Result [RawSymbol]
statSymbItems sig sl =
let st (Symb_items kind l _) = do
appendDiags $ checkSymbList $ map Symb l
mapM (symbToRaw True sig kind) l
in fmap concat (mapM st sl)
-- | bool indicates if a deeper symbol check is possible for target symbols
symbToRaw :: Bool -> Sign f e -> SYMB_KIND -> SYMB -> Result RawSymbol
symbToRaw b sig k si = case si of
Symb_id idt -> return $ case k of
Sorts_kind -> ASymbol $ idToSortSymbol idt
_ -> AKindedSymb k idt
Qual_id idt t _ -> typedSymbKindToRaw b sig k idt t
typedSymbKindToRaw :: Bool -> Sign f e -> SYMB_KIND -> Id -> TYPE
-> Result RawSymbol
typedSymbKindToRaw b sig k idt t = let
pm = predMap sig
om = opMap sig
getSet = MapSet.lookup idt
err = plain_error (AKindedSymb Implicit idt)
(showDoc idt ":" ++ showDoc t
"does not have kind" ++ showDoc k "") (getRange idt)
aSymb = ASymbol $ case t of
O_type ot -> idToOpSymbol idt $ toOpType ot
P_type pt -> idToPredSymbol idt $ toPredType pt
A_type s -> idToOpSymbol idt $ sortToOpType s
unKnown = do
appendDiags [mkDiag Error "unknown symbol" aSymb]
return aSymb
in case k of
Implicit -> case t of
A_type s -> if b then do
let pt = sortToPredType s
ot = sortToOpType s
pot = mkPartial ot
hasPred = Set.member pt $ getSet pm
hasOp = Set.member ot $ getSet om
hasPOp = Set.member pot $ getSet om
bothWarn = when hasPred $
appendDiags [mkDiag Warning "considering operation only" idt]
if hasOp then do
appendDiags [mkDiag Hint "matched constant" idt]
bothWarn
return aSymb
else if hasPOp then do
bothWarn
appendDiags [mkDiag Warning "constant is partial" idt]
return $ ASymbol $ idToOpSymbol idt pot
else if hasPred then do
appendDiags [mkDiag Hint "matched unary predicate" idt]
return $ ASymbol $ idToPredSymbol idt pt
else unKnown
else do
appendDiags [mkDiag Warning "qualify name as pred or op" idt]
return aSymb
_ -> return aSymb
Ops_kind -> case t of
P_type _ -> err
_ ->
let ot = case t of
O_type aot -> toOpType aot
A_type s -> sortToOpType s
P_type _ -> error "CASL.typedSymbKindToRaw.Ops_kind"
pot = mkPartial ot
isMem aot = Set.member aot $ getSet om
in if b then
if isMem ot then return aSymb
else if isMem pot then do
appendDiags [mkDiag Warning "operation is partial" idt]
return $ ASymbol $ idToOpSymbol idt pot
else unKnown
else return aSymb
Preds_kind -> case t of
O_type _ -> err
_ ->
let pt = case t of
A_type s -> sortToPredType s
P_type qt -> toPredType qt
O_type _ -> error "CASL.typedSymbKindToRaw.Preds_kind"
pSymb = ASymbol $ idToPredSymbol idt pt
in if b then
if Set.member pt $ getSet pm then do
appendDiags [mkDiag Hint "matched predicate" idt]
return pSymb
else unKnown
else return pSymb
Sorts_kind -> err
morphismToSymbMap :: Morphism f e m -> SymbolMap
morphismToSymbMap = morphismToSymbMapAux False
morphismToSymbMapAux :: Bool -> Morphism f e m -> SymbolMap
morphismToSymbMapAux b mor = let
src = msource mor
sorts = sort_map mor
ops = op_map mor
preds = pred_map mor
sortSymMap = Set.fold
(\ s -> let t = mapSort sorts s in
if b && s == t then id else
Map.insert (idToSortSymbol s) $ idToSortSymbol t)
Map.empty $ sortSet src
opSymMap = MapSet.foldWithKey
( \ i t -> let (j, k) = mapOpSym sorts ops (i, t) in
if b && i == j && opKind k == opKind t then id else
Map.insert (idToOpSymbol i t) $ idToOpSymbol j k)
Map.empty $ opMap src
predSymMap = MapSet.foldWithKey
( \ i t -> let (j, k) = mapPredSym sorts preds (i, t) in
if b && i == j then id else
Map.insert (idToPredSymbol i t) $ idToPredSymbol j k)
Map.empty $ predMap src
in foldr Map.union sortSymMap [opSymMap, predSymMap]
matches :: Symbol -> RawSymbol -> Bool
matches (Symbol idt k) rs = case rs of
ASymbol (Symbol id2 k2) -> idt == id2 && case (k, k2) of
(OpAsItemType ot, OpAsItemType ot2) -> compatibleOpTypes ot ot2
_ -> k == k2
AKindedSymb rk di -> let res = idt == di in case (k, rk) of
(_, Implicit) -> res
(SortAsItemType, Sorts_kind) -> res
(OpAsItemType _, Ops_kind) -> res
(PredAsItemType _, Preds_kind) -> res
_ -> False
idMor :: m -> Sign f e -> Morphism f e m
idMor extEm sigma = embedMorphism extEm sigma sigma
composeM :: Eq e => (Morphism f e m -> Morphism f e m -> Result m)
-> Morphism f e m -> Morphism f e m -> Result (Morphism f e m)
composeM comp mor1 mor2 = do
let sMap1 = sort_map mor1
src = msource mor1
tar = mtarget mor2
oMap1 = op_map mor1
pMap1 = pred_map mor1
sMap2 = sort_map mor2
oMap2 = op_map mor2
pMap2 = pred_map mor2
sMap = composeMap (MapSet.setToMap $ sortSet src) sMap1 sMap2
oMap = if Map.null oMap2 then oMap1 else
MapSet.foldWithKey ( \ i ot ->
let (ni, nt) = mapOpSym sMap2 oMap2
$ mapOpSym sMap1 oMap1 (i, ot)
k = opKind nt
in if i == ni && opKind ot == k then id else
Map.insert (i, mkPartial ot) (ni, k))
Map.empty $ opMap src
pMap = if Map.null pMap2 then pMap1 else
MapSet.foldWithKey ( \ i pt ->
let ni = fst $ mapPredSym sMap2 pMap2
$ mapPredSym sMap1 pMap1 (i, pt)
in if i == ni then id else Map.insert (i, pt) ni)
Map.empty $ predMap src
extComp <- comp mor1 mor2
let emb = embedMorphism extComp src tar
return $ cleanMorMaps emb
{ sort_map = sMap
, op_map = oMap
, pred_map = pMap }
legalSign :: Sign f e -> Bool
legalSign sigma = MapSet.setAll legalSort (Rel.nodes $ sortRel sigma)
&& MapSet.all legalOpType (opMap sigma)
&& MapSet.all legalPredType (predMap sigma)
where sorts = sortSet sigma
legalSort s = Set.member s sorts
legalOpType t = legalSort (opRes t)
&& all legalSort (opArgs t)
legalPredType = all legalSort . predArgs
-- | the image of a signature morphism
imageOfMorphism :: Morphism f e m -> Sign f e
imageOfMorphism m = imageOfMorphismAux (const $ extendedInfo $ mtarget m) m
-- | the generalized image of a signature morphism
imageOfMorphismAux :: (Morphism f e m -> e) -> Morphism f e m -> Sign f e
imageOfMorphismAux fE m =
inducedSignAux (\ _ _ _ _ _ -> fE m)
(sort_map m) (op_map m) (pred_map m) (extended_map m) (msource m)
type InducedSign f e m r =
Sort_map -> Op_map -> Pred_map -> m -> Sign f e -> r
-- | the induced signature image of a signature morphism
inducedSignAux :: InducedSign f e m e -> InducedSign f e m (Sign f e)
inducedSignAux f sm om pm em src =
let ms = mapSort sm
msorts = Set.map ms
in (emptySign $ f sm om pm em src)
{ sortRel = Rel.transClosure . Rel.irreflex . Rel.map ms $ sortRel src
-- sorts may fall together and need to be removed as trivial relation
, emptySortSet = msorts $ emptySortSet src
, opMap = inducedOpMap sm om $ opMap src
, assocOps = inducedOpMap sm om $ assocOps src
, predMap = inducedPredMap sm pm $ predMap src }
inducedOpMap :: Sort_map -> Op_map -> OpMap -> OpMap
inducedOpMap sm fm = MapSet.foldWithKey
(\ i ot -> let (j, nt) = mapOpSym sm fm (i, ot)
in MapSet.insert j nt) MapSet.empty
inducedPredMap :: Sort_map -> Pred_map -> PredMap -> PredMap
inducedPredMap sm pm = MapSet.foldWithKey
( \ i pt -> let (j, nt) = mapPredSym sm pm (i, pt)
in MapSet.insert j nt) MapSet.empty
legalMor :: MorphismExtension e m => Morphism f e m -> Result ()
legalMor mor =
let s1 = msource mor
s2 = mtarget mor
sm = sort_map mor
msorts = Set.map $ mapSort sm
in if legalSign s1
&& Set.isSubsetOf (msorts $ sortSet s1) (sortSet s2)
&& Set.isSubsetOf (msorts $ emptySortSet s1) (emptySortSet s2)
&& isSubOpMap (inducedOpMap sm (op_map mor) $ opMap s1) (opMap s2)
&& isSubMap (inducedPredMap sm (pred_map mor) $ predMap s1) (predMap s2)
&& legalSign s2
then legalMorphismExtension mor else fail "illegal CASL morphism"
isInclOpMap :: Op_map -> Bool
isInclOpMap = all (\ ((i, _), (j, _)) -> i == j) . Map.toList
idOrInclMorphism :: Morphism f e m -> Morphism f e m
idOrInclMorphism m =
let src = opMap $ msource m
tar = opMap $ mtarget m
in if isSubOpMap tar src then m
else let diffOpMap = MapSet.toMap $ MapSet.difference src tar in
m { op_map = Map.fromList $ concatMap (\ (i, s) ->
map (\ t -> ((i, t), (i, Total)))
$ Set.toList s) $ Map.toList diffOpMap }
sigInclusion :: m -- ^ computed extended morphism
-> Sign f e -> Sign f e -> Result (Morphism f e m)
sigInclusion extEm sigma1 =
return . idOrInclMorphism . embedMorphism extEm sigma1
addSigM :: Monad m => (e -> e -> m e) -> Sign f e -> Sign f e -> m (Sign f e)
addSigM f a b = do
e <- f (extendedInfo a) $ extendedInfo b
return $ addSig (const $ const e) a b
plainMorphismUnion :: (e -> e -> e) -- ^ join signature extensions
-> Morphism f e m -> Morphism f e m -> Result (Morphism f e m)
plainMorphismUnion = morphismUnion retExtMap
retExtMap :: b -> Morphism f e m -> Result m
retExtMap = const $ return . extended_map
morphismUnion :: (Morphism f e m -> Morphism f e m -> Result m)
-- ^ join morphism extensions
-> (e -> e -> e) -- ^ join signature extensions
-> Morphism f e m -> Morphism f e m -> Result (Morphism f e m)
morphismUnion uniteM addSigExt =
morphismUnionM uniteM (\ e -> return . addSigExt e)
morphismUnionM :: (Morphism f e m -> Morphism f e m -> Result m)
-- ^ join morphism extensions
-> (e -> e -> Result e) -- ^ join signature extensions
-> Morphism f e m -> Morphism f e m -> Result (Morphism f e m)
-- consider identity mappings but filter them eventually
morphismUnionM uniteM addSigExt mor1 mor2 =
let smap1 = sort_map mor1
smap2 = sort_map mor2
s1 = msource mor1
s2 = msource mor2
us1 = Set.difference (sortSet s1) $ Map.keysSet smap1
us2 = Set.difference (sortSet s2) $ Map.keysSet smap2
omap1 = op_map mor1
omap2 = op_map mor2
uo1 = foldr delOp (opMap s1) $ Map.keys omap1
uo2 = foldr delOp (opMap s2) $ Map.keys omap2
delOp (n, ot) m = diffOpMapSet m $ MapSet.fromList [(n, [mkTotal ot])]
uo = addOpMapSet uo1 uo2
pmap1 = pred_map mor1
pmap2 = pred_map mor2
up1 = foldr delPred (predMap s1) $ Map.keys pmap1
up2 = foldr delPred (predMap s2) $ Map.keys pmap2
up = addMapSet up1 up2
delPred (n, pt) = MapSet.delete n pt
(sds, smap) = foldr ( \ (i, j) (ds, m) -> case Map.lookup i m of
Nothing -> (ds, Map.insert i j m)
Just k -> if j == k then (ds, m) else
(Diag Error
("incompatible mapping of sort " ++ showId i " to "
++ showId j " and " ++ showId k "")
nullRange : ds, m)) ([], smap1)
(Map.toList smap2 ++ map (\ a -> (a, a))
(Set.toList $ Set.union us1 us2))
(ods, omap) = foldr ( \ (isc@(i, ot), jsc@(j, t)) (ds, m) ->
case Map.lookup isc m of
Nothing -> (ds, Map.insert isc jsc m)
Just (k, p) -> if j == k then if p == t then (ds, m)
else (ds, Map.insert isc (j, Total) m) else
(Diag Error
("incompatible mapping of op " ++ showId i ":"
++ showDoc (setOpKind t ot) " to "
++ showId j " and " ++ showId k "") nullRange : ds, m))
(sds, omap1) (Map.toList omap2 ++ map
( \ (a, ot) -> ((a, mkPartial ot), (a, opKind ot)))
(mapSetToList uo))
(pds, pmap) = foldr ( \ (isc@(i, pt), j) (ds, m) ->
case Map.lookup isc m of
Nothing -> (ds, Map.insert isc j m)
Just k -> if j == k then (ds, m) else
(Diag Error
("incompatible mapping of pred " ++ showId i ":"
++ showDoc pt " to " ++ showId j " and "
++ showId k "") nullRange : ds, m)) (ods, pmap1)
(Map.toList pmap2 ++ map ( \ (a, pt) -> ((a, pt), a))
(mapSetToList up))
in if null pds then do
s3 <- addSigM addSigExt s1 s2
s4 <- addSigM addSigExt (mtarget mor1) $ mtarget mor2
extM <- uniteM mor1 mor2
return $ cleanMorMaps
(embedMorphism extM s3 s4)
{ sort_map = smap
, op_map = omap
, pred_map = pmap }
else Result pds Nothing
cleanMorMaps :: Morphism f e m -> Morphism f e m
cleanMorMaps m = m
{ sort_map = Map.filterWithKey (/=) $ sort_map m
, op_map = Map.filterWithKey
(\ (i, ot) (j, k) -> i /= j || k == Total && Set.member ot
(MapSet.lookup i $ opMap $ msource m)) $ op_map m
, pred_map = Map.filterWithKey ((/=) . fst) $ pred_map m }
isSortInjective :: Morphism f e m -> Bool
isSortInjective m =
let ss = sortSet $ msource m
in Set.size ss == Set.size (Set.map (mapSort $ sort_map m) ss)
sumSize :: MapSet.MapSet a b -> Int
sumSize = sum . map Set.size . Map.elems . MapSet.toMap
-- morphism extension m is not considered here
isInjective :: Morphism f e m -> Bool
isInjective m = isSortInjective m && let
src = msource m
sm = sort_map m
os = opMap src
ps = predMap src
in sumSize os == sumSize (inducedOpMap sm (op_map m) os)
&& sumSize ps == sumSize (inducedPredMap sm (pred_map m) ps)
instance Pretty RawSymbol where
pretty rsym = case rsym of
ASymbol sy -> pretty sy
AKindedSymb k i -> pretty k <+> pretty i
printMorphism :: (e -> e -> Bool) -> (m -> Bool) -> (e -> Doc)
-> (Morphism f e m -> Doc) -> Morphism f e m -> Doc
printMorphism isSubSigExt isInclMorExt fE fM mor =
let src = msource mor
tar = mtarget mor
ops = op_map mor
prSig s = specBraces (space <> printSign fE s)
srcD = prSig src
in if isInclusionMorphism isInclMorExt mor then
if isSubSig isSubSigExt tar src then
fsep [text "identity morphism over", srcD]
else fsep
[ text "inclusion morphism of", srcD
, if Map.null ops then empty
else fsep
[ text "by totalizing"
, pretty $ Set.map (uncurry idToOpSymbol) $ Map.keysSet ops ]]
else fsep
[ braces $ printMap id sepByCommas pairElems
(morphismToSymbMapAux True mor) $+$ fM mor
, colon <+> srcD, mapsto <+> prSig tar ]
instance (SignExtension e, Pretty e, Show f, MorphismExtension e m)
=> Pretty (Morphism f e m) where
pretty = printMorphism isSubSignExtension isInclusionMorphismExtension
pretty prettyMorphismExtension