Morphism.hs revision 16e124196c6b204769042028c74f533509c9b5d3
{- |
Module : $Header$
Description : Symbols and signature morphisms for the CASL logic
Copyright : (c) Christian Maeder, Till Mossakowski and Uni Bremen 2002-2004
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : non-portable (MPTC+FD)
Symbols and signature morphisms for the CASL logic
-}
module CASL.Morphism where
import CASL.Sign
import CASL.AS_Basic_CASL
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Common.Lib.Rel as Rel
import Common.Doc
import Common.DocUtils
import Common.Id
import Common.Result
import Control.Exception (assert)
import Control.Monad
type SymbolSet = Set.Set Symbol
type SymbolMap = Map.Map Symbol Symbol
data RawSymbol = ASymbol Symbol | AKindedSymb SYMB_KIND Id
deriving (Show, Eq, Ord)
instance GetRange RawSymbol where
getRange rs = case rs of
ASymbol s -> getRange s
AKindedSymb _ i -> getRange i
type RawSymbolSet = Set.Set RawSymbol
type RawSymbolMap = Map.Map RawSymbol RawSymbol
type Sort_map = Map.Map SORT SORT
-- always use the partial profile as key!
type Op_map = Map.Map (Id, OpType) (Id, OpKind)
type Pred_map = Map.Map (Id, PredType) Id
data Morphism f e m = Morphism
{ msource :: Sign f e
, mtarget :: Sign f e
, sort_map :: Sort_map
, op_map :: Op_map
, pred_map :: Pred_map
, extended_map :: m
} deriving (Show, Eq, Ord)
data DefMorExt e = DefMorExt deriving (Show, Eq, Ord)
emptyMorExt :: DefMorExt e
emptyMorExt = DefMorExt
instance Pretty (DefMorExt e) where
pretty _ = empty
class MorphismExtension e m | m -> e where
ideMorphismExtension :: e -> m
composeMorphismExtension :: m -> m -> Result m
inverseMorphismExtension :: m -> Result m
isInclusionMorphismExtension :: m -> Bool
instance MorphismExtension () () where
ideMorphismExtension _ = ()
composeMorphismExtension _ = return
inverseMorphismExtension = return
isInclusionMorphismExtension _ = True
instance MorphismExtension e (DefMorExt e) where
ideMorphismExtension _ = emptyMorExt
composeMorphismExtension _ = return
inverseMorphismExtension = return
isInclusionMorphismExtension _ = True
type CASLMor = Morphism () () ()
isInclusionMorphism :: (m -> Bool) -> Morphism f e m -> Bool
isInclusionMorphism f m = f (extended_map m) && Map.null (sort_map m)
&& Map.null (pred_map m) && isInclOpMap (op_map m)
mapSort :: Sort_map -> SORT -> SORT
mapSort sorts s = Map.findWithDefault s s sorts
mapOpType :: Sort_map -> OpType -> OpType
mapOpType sorts t = if Map.null sorts then t else
t { opArgs = map (mapSort sorts) $ opArgs t
, opRes = mapSort sorts $ opRes t }
mapOpTypeK :: Sort_map -> OpKind -> OpType -> OpType
mapOpTypeK sorts k = makeTotal k . mapOpType sorts
makeTotal :: OpKind -> OpType -> OpType
makeTotal fk t = case fk of
Total -> mkTotal t
_ -> t
mapOpSym :: Sort_map -> Op_map -> (Id, OpType) -> (Id, OpType)
mapOpSym sMap oMap (i, ot) = let mot = mapOpType sMap ot in
case Map.lookup (i, mkPartial ot) oMap of
Nothing -> (i, mot)
Just (j, k) -> (j, makeTotal k mot)
-- | Check if two OpTypes are equal modulo totality or partiality
compatibleOpTypes :: OpType -> OpType -> Bool
compatibleOpTypes ot1 ot2 = opArgs ot1 == opArgs ot2 && opRes ot1 == opRes ot2
mapPredType :: Sort_map -> PredType -> PredType
mapPredType sorts t = if Map.null sorts then t else
t { predArgs = map (mapSort sorts) $ predArgs t }
mapPredSym :: Sort_map -> Pred_map -> (Id, PredType) -> (Id, PredType)
mapPredSym sMap oMap (i, pt) =
(Map.findWithDefault i (i, pt) oMap, mapPredType sMap pt)
embedMorphism :: m -> Sign f e -> Sign f e -> Morphism f e m
embedMorphism extEm a b = Morphism
{ msource = a
, mtarget = b
, sort_map = Map.empty
, op_map = Map.empty
, pred_map = Map.empty
, extended_map = extEm }
symbTypeToKind :: SymbType -> SYMB_KIND
symbTypeToKind st = case st of
OpAsItemType _ -> Ops_kind
PredAsItemType _ -> Preds_kind
SortAsItemType -> Sorts_kind
OtherTypeKind s -> OtherKinds s
symbolToRaw :: Symbol -> RawSymbol
symbolToRaw = ASymbol
idToRaw :: Id -> RawSymbol
idToRaw = AKindedSymb Implicit
rawSymName :: RawSymbol -> Id
rawSymName rs = case rs of
ASymbol sym -> symName sym
AKindedSymb _ i -> i
symOf :: Sign f e -> SymbolSet
symOf sigma = let
sorts = Set.map idToSortSymbol $ sortSet sigma
ops = Set.fromList $
concatMap (\ (i, ts) -> map ( \ t -> idToOpSymbol i t) $ Set.toList ts)
$ Map.toList $ opMap sigma
preds = Set.fromList $
concatMap (\ (i, ts) -> map ( \ t -> idToPredSymbol i t)
$ Set.toList ts) $ Map.toList $ predMap sigma
in Set.unions [sorts, ops, preds]
checkSymbList :: [SYMB_OR_MAP] -> [Diagnosis]
checkSymbList l = case l of
Symb (Symb_id a) : Symb (Qual_id b t _) : r -> mkDiag Warning
("profile '" ++ showDoc t "' does not apply to '"
++ showId a "' but only to") b : checkSymbList r
_ : r -> checkSymbList r
[] -> []
statSymbMapItems :: [SYMB_MAP_ITEMS] -> Result RawSymbolMap
statSymbMapItems sl = do
let st (Symb_map_items kind l _) = do
appendDiags $ checkSymbList l
fmap concat $ mapM (symbOrMapToRaw kind) l
insertRsys m1 (rsy1, rsy2) = let m3 = Map.insert rsy1 rsy2 m1 in
case Map.lookup rsy1 m1 of
Nothing -> return $ case rsy1 of
ASymbol (Symbol i SortAsItemType) ->
case Map.lookup (AKindedSymb Implicit i) m1 of
Just (AKindedSymb Implicit j) | rawSymName rsy2 == j -> m1
_ -> m3
AKindedSymb Implicit i ->
let rsy3 = ASymbol (Symbol i SortAsItemType) in
case Map.lookup rsy3 m1 of
Just (ASymbol (Symbol j SortAsItemType))
| rawSymName rsy2 == j -> Map.delete rsy3 m3
_ -> m3
_ -> m3
Just rsy3 -> if rsy2 == rsy3 then return m1 else
plain_error m1 ("Symbol " ++ showDoc rsy1 " mapped twice to "
++ showDoc rsy2 " and " ++ showDoc rsy3 "") nullRange
ls <- mapM st sl
foldM insertRsys Map.empty (concat ls)
symbOrMapToRaw :: SYMB_KIND -> SYMB_OR_MAP -> Result [(RawSymbol, RawSymbol)]
symbOrMapToRaw k sm = case sm of
Symb s -> do
v <- symbToRaw k s
return [(v, v)]
Symb_map s t _ -> do
appendDiags $ case (s, t) of
(Symb_id a, Symb_id b) | a == b ->
[mkDiag Hint "unneeded identical mapping of" a]
_ -> []
w <- symbToRaw k s
x <- symbToRaw k t
let mkS = ASymbol . idToSortSymbol
case (s, t) of
(Qual_id _ t1 _, Qual_id _ t2 _) -> case (t1, t2) of
(O_type (Op_type _ args1 res1 _), O_type (Op_type _ args2 res2 _))
| length args1 == length args2 -> -- ignore partiality
return $ (w, x) : (mkS res1, mkS res2)
: zipWith (\ s1 s2 -> (mkS s1, mkS s2)) args1 args2
(P_type (Pred_type args1 _), P_type (Pred_type args2 _))
| length args1 == length args2 ->
return $ (w, x)
: zipWith (\ s1 s2 -> (mkS s1, mkS s2)) args1 args2
(O_type (Op_type _ [] res1 _), A_type s2) ->
return [(w, x), (mkS res1, mkS s2)]
(A_type s1, O_type (Op_type _ [] res2 _)) ->
return [(w, x), (mkS s1, mkS res2)]
(A_type s1, A_type s2) ->
return [(w, x), (mkS s1, mkS s2)]
_ -> fail $ "profiles '" ++ showDoc t1 "' and '"
++ showDoc t2 "' do not match"
_ -> return [(w, x)]
statSymbItems :: [SYMB_ITEMS] -> Result [RawSymbol]
statSymbItems sl =
let st (Symb_items kind l _) = do
appendDiags $ checkSymbList $ map Symb l
mapM (symbToRaw kind) l
in fmap concat (mapM st sl)
symbToRaw :: SYMB_KIND -> SYMB -> Result RawSymbol
symbToRaw k si = case si of
Symb_id idt -> return $ case k of
Sorts_kind -> ASymbol $ idToSortSymbol idt
_ -> AKindedSymb k idt
Qual_id idt t _ -> typedSymbKindToRaw k idt t
typedSymbKindToRaw :: SYMB_KIND -> Id -> TYPE -> Result RawSymbol
typedSymbKindToRaw k idt t = let
err = plain_error (AKindedSymb Implicit idt)
(showDoc idt ":" ++ showDoc t
"does not have kind" ++ showDoc k "") nullRange
aSymb = ASymbol $ case t of
O_type ot -> idToOpSymbol idt $ toOpType ot
P_type pt -> idToPredSymbol idt $ toPredType pt
-- in case of ambiguity, return a constant function type
-- this deviates from the CASL summary !!!
A_type s ->
let ot = OpType {opKind = Total, opArgs = [], opRes = s}
in idToOpSymbol idt ot
in case k of
Implicit -> case t of
A_type _ -> do
appendDiags [mkDiag Warning "qualify name as pred or op" idt]
return aSymb
_ -> return aSymb
Ops_kind -> case t of
P_type _ -> err
_ -> return aSymb
Preds_kind -> case t of
O_type _ -> err
A_type s -> return $ ASymbol $
let pt = PredType {predArgs = [s]}
in idToPredSymbol idt pt
P_type _ -> return aSymb
_ -> err
symbMapToMorphism :: m -> Sign f e -> Sign f e
-> SymbolMap -> Result (Morphism f e m)
symbMapToMorphism extEm sigma1 sigma2 smap = let
sort_map1 = Set.fold mapMSort Map.empty (sortSet sigma1)
mapMSort s m =
case Map.lookup Symbol {symName = s, symbType = SortAsItemType} smap
of Just sym -> let t = symName sym in if s == t then m else
Map.insert s t m
Nothing -> m
op_map1 = Map.foldWithKey mapOp Map.empty (opMap sigma1)
pred_map1 = Map.foldWithKey mapPred Map.empty (predMap sigma1)
mapOp i ots m = Set.fold (insOp i) m ots
insOp i ot m =
case Map.lookup Symbol {symName = i, symbType = OpAsItemType ot} smap
of Just sym -> let j = symName sym in case symbType sym of
OpAsItemType oty -> let k = opKind oty in
if j == i && opKind ot == k then m
else Map.insert (i, mkPartial ot) (j, k) m
_ -> m
_ -> m
mapPred i pts m = Set.fold (insPred i) m pts
insPred i pt m =
case Map.lookup Symbol {symName = i, symbType = PredAsItemType pt} smap
of Just sym -> let j = symName sym in case symbType sym of
PredAsItemType _ -> if i == j then m else Map.insert (i, pt) j m
_ -> m
_ -> m
in return (embedMorphism extEm sigma1 sigma2)
{ sort_map = sort_map1
, op_map = op_map1
, pred_map = pred_map1 }
morphismToSymbMap :: Morphism f e m -> SymbolMap
morphismToSymbMap = morphismToSymbMapAux False
morphismToSymbMapAux :: Bool -> Morphism f e m -> SymbolMap
morphismToSymbMapAux b mor = let
src = msource mor
sorts = sort_map mor
ops = op_map mor
preds = pred_map mor
sortSymMap = Set.fold
(\ s -> let t = mapSort sorts s in
if b && s == t then id else
Map.insert (idToSortSymbol s) $ idToSortSymbol t)
Map.empty $ sortSet src
opSymMap = Map.foldWithKey
( \ i s m -> Set.fold
( \ t -> let (j, k) = mapOpSym sorts ops (i, t) in
if b && i == j && opKind k == opKind t then id else
Map.insert (idToOpSymbol i t) $ idToOpSymbol j k)
m s) Map.empty $ opMap src
predSymMap = Map.foldWithKey
( \ i s m -> Set.fold
( \ t -> let (j, k) = mapPredSym sorts preds (i, t) in
if b && i == j then id else
Map.insert (idToPredSymbol i t) $ idToPredSymbol j k)
m s) Map.empty $ predMap src
in foldr Map.union sortSymMap [opSymMap, predSymMap]
matches :: Symbol -> RawSymbol -> Bool
matches (Symbol idt k) rs = case rs of
ASymbol (Symbol id2 k2) -> idt == id2 && case (k, k2) of
(OpAsItemType ot, OpAsItemType ot2) -> compatibleOpTypes ot ot2
_ -> k == k2
AKindedSymb rk di -> let res = idt == di in case (k, rk) of
(_, Implicit) -> res
(SortAsItemType, Sorts_kind) -> res
(OpAsItemType _, Ops_kind) -> res
(PredAsItemType _, Preds_kind) -> res
(OtherTypeKind s, OtherKinds t) -> t == s && res
_ -> False
idMor :: m -> Sign f e -> Morphism f e m
idMor extEm sigma = embedMorphism extEm sigma sigma
composeM :: Eq e => (m -> m -> Result m)
-> Morphism f e m -> Morphism f e m -> Result (Morphism f e m)
composeM comp mor1 mor2 = if mtarget mor1 == msource mor2 then do
let sMap1 = sort_map mor1
src = msource mor1
tar = mtarget mor2
oMap1 = op_map mor1
pMap1 = pred_map mor1
sMap2 = sort_map mor2
oMap2 = op_map mor2
pMap2 = pred_map mor2
sMap = if Map.null sMap2 then sMap1 else Set.fold ( \ i ->
let j = mapSort sMap2 (mapSort sMap1 i) in
if i == j then id else Map.insert i j)
Map.empty $ sortSet src
oMap = if Map.null oMap2 then oMap1 else
Map.foldWithKey ( \ i t m ->
Set.fold ( \ ot ->
let (ni, nt) = mapOpSym sMap2 oMap2 $
mapOpSym sMap1 oMap1 (i, ot)
k = opKind nt
in assert (mapOpTypeK sMap k ot == nt) $
if i == ni && opKind ot == k then id else
Map.insert (i, mkPartial ot) (ni, k)) m t)
Map.empty $ opMap src
pMap = if Map.null pMap2 then pMap1 else
Map.foldWithKey ( \ i t m ->
Set.fold ( \ pt ->
let (ni, nt) = mapPredSym sMap2 pMap2 $
mapPredSym sMap1 pMap1 (i, pt)
in assert (mapPredType sMap pt == nt) $
if i == ni then id else Map.insert (i, pt) ni) m t)
Map.empty $ predMap src
extComp <- comp (extended_map mor1) $ extended_map mor2
let emb = embedMorphism extComp src tar
return $ emb
{ sort_map = sMap
, op_map = oMap
, pred_map = pMap }
else fail "target of first and source of second morphism are different"
legalSign :: Sign f e -> Bool
legalSign sigma =
Map.foldWithKey (\s sset b -> b && legalSort s && all legalSort
(Set.toList sset))
True (Rel.toMap (sortRel sigma))
&& Map.fold (\ts b -> b && all legalOpType (Set.toList ts))
True (opMap sigma)
&& Map.fold (\ts b -> b && all legalPredType (Set.toList ts))
True (predMap sigma)
where sorts = sortSet sigma
legalSort s = Set.member s sorts
legalOpType t = legalSort (opRes t)
&& all legalSort (opArgs t)
legalPredType = all legalSort . predArgs
-- | the image of a signature morphism
imageOfMorphism :: Morphism f e m -> Sign f e
imageOfMorphism m = imageOfMorphismAux (const $ extendedInfo $ mtarget m) m
-- | the generalized image of a signature morphism
imageOfMorphismAux :: (Morphism f e m -> e) -> Morphism f e m -> Sign f e
imageOfMorphismAux fE m =
inducedSignAux (\ _ _ _ _ _ -> fE m)
(sort_map m) (op_map m) (pred_map m) (extended_map m) (msource m)
type InducedSign f e m r =
Sort_map -> Op_map -> Pred_map -> m -> Sign f e -> r
-- | the induced signature image of a signature morphism
inducedSignAux :: InducedSign f e m e -> InducedSign f e m (Sign f e)
inducedSignAux f sm om pm em src =
let ms = mapSort sm
msorts = Set.map ms
in (emptySign $ f sm om pm em src)
{ sortSet = msorts $ sortSet src
, sortRel = Rel.map ms $ sortRel src
, emptySortSet = msorts $ emptySortSet src
, opMap = inducedOpMap sm om $ opMap src
, assocOps = inducedOpMap sm om $ assocOps src
, predMap = inducedPredMap sm pm $ predMap src }
inducedOpMap :: Sort_map -> Op_map -> OpMap -> OpMap
inducedOpMap sm fm = Map.foldWithKey
( \ i -> flip $ Set.fold ( \ ot ->
let (j, nt) = mapOpSym sm fm (i, ot)
in Rel.setInsert j nt)) Map.empty
inducedPredMap :: Sort_map -> Pred_map -> Map.Map Id (Set.Set PredType)
-> Map.Map Id (Set.Set PredType)
inducedPredMap sm pm = Map.foldWithKey
( \ i -> flip $ Set.fold ( \ ot ->
let (j, nt) = mapPredSym sm pm (i, ot)
in Rel.setInsert j nt)) Map.empty
legalMor :: Morphism f e m -> Bool
legalMor mor =
let s1 = msource mor
s2 = mtarget mor
sm = sort_map mor
msorts = Set.map $ mapSort sm
in legalSign s1
&& Set.isSubsetOf (msorts $ sortSet s1) (sortSet s2)
&& Set.isSubsetOf (msorts $ emptySortSet s1) (emptySortSet s2)
&& isSubOpMap (inducedOpMap sm (op_map mor) $ opMap s1) (opMap s2)
&& isSubMapSet (inducedPredMap sm (pred_map mor) $ predMap s1) (predMap s2)
&& legalSign s2
isInclOpMap :: Op_map -> Bool
isInclOpMap = all (\ ((i, _), (j, k)) -> i == j && k == Total) . Map.toList
idOrInclMorphism :: (e -> e -> Bool) -> Morphism f e m -> Morphism f e m
idOrInclMorphism isSubExt m =
let src = msource m
tar = mtarget m
in if isSubSig isSubExt tar src then m
else let diffOpMap = diffMapSet (opMap src) $ opMap tar in
m { op_map = Map.fromList $ concatMap (\ (i, s) ->
map (\ t -> ((i, t), (i, Total)))
$ Set.toList s) $ Map.toList diffOpMap }
sigInclusion :: (Pretty f, Pretty e)
=> m -- ^ computed extended morphism
-> (e -> e -> Bool) -- ^ subsignature test of extensions
-> (e -> e -> e) -- ^ difference of signature extensions
-> Sign f e -> Sign f e -> Result (Morphism f e m)
sigInclusion extEm isSubExt diffExt sigma1 sigma2 =
if isSubSig isSubExt sigma1 sigma2 then
return $ idOrInclMorphism isSubExt $ embedMorphism extEm sigma1 sigma2
else Result [Diag Error
("Attempt to construct inclusion between non-subsignatures:\n"
++ showDoc (diffSig diffExt sigma1 sigma2) "") nullRange] Nothing
addSigM :: Monad m => (e -> e -> m e) -> Sign f e -> Sign f e -> m (Sign f e)
addSigM f a b = do
e <- f (extendedInfo a) $ extendedInfo b
return $ addSig (const $ const e) a b
morphismUnion :: (m -> m -> m) -- ^ join morphism extensions
-> (e -> e -> e) -- ^ join signature extensions
-> Morphism f e m -> Morphism f e m -> Result (Morphism f e m)
morphismUnion uniteM addSigExt =
morphismUnionM uniteM (\ e -> return . addSigExt e)
morphismUnionM :: (m -> m -> m) -- ^ join morphism extensions
-> (e -> e -> Result e) -- ^ join signature extensions
-> Morphism f e m -> Morphism f e m -> Result (Morphism f e m)
-- consider identity mappings but filter them eventually
morphismUnionM uniteM addSigExt mor1 mor2 =
let smap1 = sort_map mor1
smap2 = sort_map mor2
s1 = msource mor1
s2 = msource mor2
us1 = Set.difference (sortSet s1) $ Map.keysSet smap1
us2 = Set.difference (sortSet s2) $ Map.keysSet smap2
omap1 = op_map mor1
omap2 = op_map mor2
uo1 = foldr delOp (opMap s1) $ Map.keys omap1
uo2 = foldr delOp (opMap s2) $ Map.keys omap2
delOp (n, ot) m = diffMapSet m $ Map.singleton n $
Set.fromList [mkPartial ot, mkTotal ot]
uo = addOpMapSet uo1 uo2
pmap1 = pred_map mor1
pmap2 = pred_map mor2
up1 = foldr delPred (predMap s1) $ Map.keys pmap1
up2 = foldr delPred (predMap s2) $ Map.keys pmap2
up = addMapSet up1 up2
delPred (n, pt) m = diffMapSet m $ Map.singleton n $ Set.singleton pt
(sds, smap) = foldr ( \ (i, j) (ds, m) -> case Map.lookup i m of
Nothing -> (ds, Map.insert i j m)
Just k -> if j == k then (ds, m) else
(Diag Error
("incompatible mapping of sort " ++ showId i " to "
++ showId j " and " ++ showId k "")
nullRange : ds, m)) ([], smap1)
(Map.toList smap2 ++ map (\ a -> (a, a))
(Set.toList $ Set.union us1 us2))
(ods, omap) = foldr ( \ (isc@(i, ot), jsc@(j, t)) (ds, m) ->
case Map.lookup isc m of
Nothing -> (ds, Map.insert isc jsc m)
Just (k, p) -> if j == k then if p == t then (ds, m)
else (ds, Map.insert isc (j, Total) m) else
(Diag Error
("incompatible mapping of op " ++ showId i ":"
++ showDoc ot { opKind = t } " to "
++ showId j " and " ++ showId k "") nullRange : ds, m))
(sds, omap1) (Map.toList omap2 ++ concatMap
( \ (a, s) -> map ( \ ot -> ((a, mkPartial ot),
(a, opKind ot)))
$ Set.toList s) (Map.toList uo))
(pds, pmap) = foldr ( \ (isc@(i, pt), j) (ds, m) ->
case Map.lookup isc m of
Nothing -> (ds, Map.insert isc j m)
Just k -> if j == k then (ds, m) else
(Diag Error
("incompatible mapping of pred " ++ showId i ":"
++ showDoc pt " to " ++ showId j " and "
++ showId k "") nullRange : ds, m)) (ods, pmap1)
(Map.toList pmap2 ++ concatMap ( \ (a, s) -> map
( \ pt -> ((a, pt), a)) $ Set.toList s) (Map.toList up))
in if null pds then do
s3 <- addSigM addSigExt s1 s2
s4 <- addSigM addSigExt (mtarget mor1) $ mtarget mor2
let o3 = opMap s3
return
(embedMorphism (uniteM (extended_map mor1) $ extended_map mor2) s3 s4)
{ sort_map = Map.filterWithKey (/=) smap
, op_map = Map.filterWithKey
(\ (i, ot) (j, k) -> i /= j || k == Total && Set.member ot
(Map.findWithDefault Set.empty i o3)) omap
, pred_map = Map.filterWithKey (\ (i, _) j -> i /= j) pmap }
else Result pds Nothing
isSortInjective :: Morphism f e m -> Bool
isSortInjective m =
let ss = sortSet $ msource m
in Set.size ss == Set.size (Set.map (mapSort $ sort_map m) ss)
sumSize :: Map.Map a (Set.Set b) -> Int
sumSize = sum . map Set.size . Map.elems
-- morphism extension m is not considered here
isInjective :: Morphism f e m -> Bool
isInjective m = isSortInjective m && let
src = msource m
sm = sort_map m
os = opMap src
ps = predMap src
in sumSize os == sumSize (inducedOpMap sm (op_map m) os)
&& sumSize ps == sumSize (inducedPredMap sm (pred_map m) ps)
instance Pretty RawSymbol where
pretty rsym = case rsym of
ASymbol sy -> pretty sy
AKindedSymb k i -> pretty k <+> pretty i
printMorphism :: (e -> Doc) -> (m -> Doc) -> Morphism f e m
-> Doc
printMorphism fE fM mor =
let src = msource mor
tar = mtarget mor
ops = op_map mor
prSig s = specBraces (space <> printSign fE s)
srcD = prSig src
in if isInclusionMorphism (const True) mor then
if isSubSig (\ _ _ -> True) tar src then
fsep [text "identity morphism over", srcD]
else fsep
[ text "inclusion morphism of", srcD
, fsep $ if Map.null ops then
[ text "extended with"
, pretty $ Set.difference (symOf tar) $ symOf src ]
else
[ text "by totalizing"
, pretty $ Set.map (uncurry idToOpSymbol) $ Map.keysSet ops ]]
else fsep
[ pretty (morphismToSymbMapAux True mor)
$+$ fM (extended_map mor)
, colon <+> srcD, mapsto <+> prSig tar ]
instance (Pretty e, Show f, Pretty m) =>
Pretty (Morphism f e m) where
pretty = printMorphism pretty pretty