Morphism.hs revision 75a6279dbae159d018ef812185416cf6df386c10
{- |
Module : $Header$
Copyright : (c) Christian Maeder and Uni Bremen 2002-2003
Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt
Maintainer : hets@tzi.de
Stability : provisional
Portability : portable
the symbol and morphism stuff for a logic
-}
module CASL.Morphism where
import CASL.StaticAna
import CASL.AS_Basic_CASL
import Common.Id
import Common.Result
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import Data.Dynamic
data SymbType = OpAsItemType OpType
| PredAsItemType PredType
| SortAsItemType
deriving (Show, Eq, Ord)
data Symbol = Symbol {symName :: Id, symbType :: SymbType}
deriving (Show, Eq, Ord)
data RawSymbol = ASymbol Symbol | AnID Id | AKindedId Kind Id
deriving (Show, Eq, Ord)
data Kind = SortKind | FunKind | PredKind
deriving (Show, Eq, Ord)
type Sort_map = Map.Map SORT SORT
data Morphism = Morphism {msource,mtarget :: Sign,
sort_map :: Sort_map,
fun_map :: Fun_map,
pred_map :: Pred_map}
deriving (Eq, Show)
mapSort :: Sort_map -> SORT -> SORT
mapSort sorts s = Map.findWithDefault s s sorts
mapOpType :: Sort_map -> OpType -> OpType
mapOpType sorts t = t { opArgs = map (mapSort sorts) $ opArgs t
, opRes = mapSort sorts $ opRes t }
makeTotal :: FunKind -> OpType -> OpType
makeTotal Total t = t { opKind = Total }
makeTotal _ t = t
mapPredType :: Sort_map -> PredType -> PredType
mapPredType sorts t = t { predArgs = map (mapSort sorts) $ predArgs t }
embedMorphism :: Sign -> Sign -> Morphism
embedMorphism a b =
Morphism
{ msource = a
, mtarget = b
, sort_map = Map.fromList $ map (\x -> (x,x)) $
Set.toList $ sortSet a
, fun_map = Map.mapWithKey ( \ i -> Set.fromList . map
( \ e -> (e, i, opKind e))
. Set.toList) $ opMap a
, pred_map = Map.mapWithKey ( \ i -> Set.fromList . map
( \ e -> (e, i))
. Set.toList) $ predMap a
}
-- Typeable instance
sentenceTc, signTc, morphismTc, symbolTc, rawSymbolTc
:: TyCon
sentenceTc = mkTyCon "CASL.Morphism.Sentence"
signTc = mkTyCon "CASL.Morphism.Sign"
morphismTc = mkTyCon "CASL.Morphism.Morphism"
symbolTc = mkTyCon "CASL.Morphism.Symbol"
rawSymbolTc = mkTyCon "CASL.Morphism.RawSymbol"
instance Typeable Sentence where
typeOf _ = mkAppTy sentenceTc []
instance Typeable Sign where
typeOf _ = mkAppTy signTc []
instance Typeable Morphism where
typeOf _ = mkAppTy morphismTc []
instance Typeable Symbol where
typeOf _ = mkAppTy symbolTc []
instance Typeable RawSymbol where
typeOf _ = mkAppTy rawSymbolTc []
idToSortSymbol :: Id -> Symbol
idToSortSymbol idt = Symbol idt SortAsItemType
idToOpSymbol :: Id -> OpType -> Symbol
idToOpSymbol idt typ = Symbol idt (OpAsItemType typ)
idToPredSymbol :: Id -> PredType -> Symbol
idToPredSymbol idt typ = Symbol idt (PredAsItemType typ)
symbTypeToKind :: SymbType -> Kind
symbTypeToKind (OpAsItemType _) = FunKind
symbTypeToKind (PredAsItemType _) = PredKind
symbTypeToKind SortAsItemType = SortKind
symbolToRaw :: Symbol -> RawSymbol
symbolToRaw (Symbol idt typ) = AKindedId (symbTypeToKind typ) idt
idToRaw :: Id -> RawSymbol
idToRaw x = AnID x
symOf :: Sign -> Set.Set Symbol
symOf sigma =
let sorts = Set.fromList $ map idToSortSymbol
$ Set.toList $ sortSet sigma
ops = Set.fromList $
concatMap (\ (i, ts) -> map ( \ t -> idToOpSymbol i t)
$ Set.toList ts) $
Map.toList $ opMap sigma
preds = Set.fromList $
concatMap (\ (i, ts) -> map ( \ t -> idToPredSymbol i t)
$ Set.toList ts) $
Map.toList $ predMap sigma
in Set.unions [sorts, ops, preds]
statSymbMapItems :: [SYMB_MAP_ITEMS] -> Result (Map.Map RawSymbol RawSymbol)
statSymbMapItems sl = return (Map.fromList $ concat $ map s1 sl)
where
s1 (Symb_map_items kind l _) = map (symbOrMapToRaw kind) l
symbOrMapToRaw :: SYMB_KIND -> SYMB_OR_MAP -> (RawSymbol,RawSymbol)
symbOrMapToRaw k (Symb s) = (symbToRaw k s,symbToRaw k s)
symbOrMapToRaw k (Symb_map s t _) = (symbToRaw k s,symbToRaw k t)
statSymbItems :: [SYMB_ITEMS] -> Result [RawSymbol]
statSymbItems sl =
return (concat (map s1 sl))
where s1 (Symb_items kind l _) = map (symbToRaw kind) l
symbToRaw :: SYMB_KIND -> SYMB -> RawSymbol
symbToRaw k (Symb_id idt) = symbKindToRaw k idt
symbToRaw k (Qual_id idt _ _) = symbKindToRaw k idt
symbKindToRaw :: SYMB_KIND -> Id -> RawSymbol
symbKindToRaw Implicit idt = AnID idt
symbKindToRaw (Sorts_kind) idt = AKindedId SortKind idt
symbKindToRaw (Ops_kind) idt = AKindedId FunKind idt
symbKindToRaw (Preds_kind) idt = AKindedId PredKind idt
symmapOf :: Morphism -> Map.Map Symbol Symbol
symmapOf (Morphism src _ sorts ops preds) =
let
sortSymMap = Map.fromList $ map
( \ (a, b) -> (idToSortSymbol a, idToSortSymbol b))
$ Map.toList sorts
opSymMap = Map.fromList $ concatMap
( \ (i, t :: Set.Set (OpType, Id, FunKind)) ->
concatMap
( \ o ->
let ot = mapOpType sorts o
in map ( \ (_, j, k) ->
(idToOpSymbol i o, idToOpSymbol j
$ makeTotal k ot))
$ Set.toList $ Set.filter
( \ (ty, _ , _) ->
makeTotal Total ty == makeTotal Total ot) t)
$ Map.toList ops
predSymMap = Map.fromList $ concatMap
( \ (i, t :: Set.Set (PredType, Id)) ->
concatMap
( \ p ->
let pt = mapPredType sorts p
in map ( \ (_, j) ->
(idToPredSymbol i p, idToPredSymbol j pt))
$ Set.toList $ Set.filter ((==pt) . fst) t)
$ Map.toList preds
in
foldr Map.union sortSymMap [opSymMap,predSymMap]
matches :: Symbol -> RawSymbol -> Bool
matches x (ASymbol y) = x==y
matches (Symbol idt _) (AnID di) = idt==di
matches (Symbol idt SortAsItemType) (AKindedId SortKind di) = idt==di
matches (Symbol idt (OpAsItemType _)) (AKindedId FunKind di) = idt==di
matches (Symbol idt (PredAsItemType _)) (AKindedId PredKind di) = idt==di
matches _ _ = False