Cross Reference: /hets/CASL/MixfixParser.hs
MixfixParser.hs revision a91ba3a25448d1aa24aaa6f094316334187084d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
{- |
Module : $Header$
Description : Mixfix analysis of terms
Copyright : Christian Maeder and Uni Bremen 2002-2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : experimental
Portability : portable
Mixfix analysis of terms
-}
module CASL.MixfixParser
( resolveFormula, resolveMixfix, MixResolve
, resolveMixTrm, resolveMixFrm
, IdSets, mkIdSets, emptyIdSets, unite, single
, makeRules, Mix(..), emptyMix
, ids_BASIC_SPEC, ids_SIG_ITEMS, ids_OP_ITEM, ids_PRED_ITEM)
where
import CASL.AS_Basic_CASL
import Common.GlobalAnnotations
import Common.Result
import Common.Id
import qualified Data.Set as Set
import qualified Data.Map as Map
import Common.Earley
import Common.ConvertMixfixToken
import Common.DocUtils
import Common.AS_Annotation
import CASL.ShowMixfix
import CASL.ToDoc()
import Control.Exception (assert)
data Mix b s f e = MixRecord
{ getBaseIds :: b -> IdSets -- ^ ids of extra basic items
, getSigIds :: s -> IdSets -- ^ ids of extra sig items
, getExtIds :: e -> IdSets -- ^ ids of signature extensions
, mixRules :: (Token -> [Rule], Rules) -- ^ rules for Earley
, putParen :: f -> f -- ^ parenthesize extended formula
, mixResolve :: MixResolve f -- ^ resolve extended formula
}
-- | an initially empty record
emptyMix :: Mix b s f e
emptyMix = MixRecord
{ getBaseIds = const emptyIdSets
, getSigIds = const emptyIdSets
, getExtIds = const emptyIdSets
, mixRules = error "emptyMix"
, putParen = id
, mixResolve = const $ const return
}
-- precompute non-simple op and pred identifier for mixfix rules
-- | the precomputed sets of op and pred (non-simple) identifiers
type IdSets = (Set.Set Id, Set.Set Id) -- ops are first component
-- | the empty 'IdSets'
emptyIdSets :: IdSets
emptyIdSets = (Set.empty, Set.empty)
-- | union 'IdSets'
unite :: [IdSets] -> IdSets
unite l = (Set.unions $ map fst l, Set.unions $ map snd l)
-- | get all ids of a basic spec
ids_BASIC_SPEC :: (b -> IdSets) -> (s -> IdSets) -> BASIC_SPEC b s f -> IdSets
ids_BASIC_SPEC f g (Basic_spec al) =
unite $ map (ids_BASIC_ITEMS f g . item) al
ids_BASIC_ITEMS :: (b -> IdSets) -> (s -> IdSets)
-> BASIC_ITEMS b s f -> IdSets
ids_BASIC_ITEMS f g bi = case bi of
Sig_items sis -> ids_SIG_ITEMS g sis
Free_datatype _ al _ -> ids_anDATATYPE_DECLs al
Sort_gen al _ -> unite $ map (ids_SIG_ITEMS g . item) al
Ext_BASIC_ITEMS b -> f b
_ -> emptyIdSets
ids_anDATATYPE_DECLs :: [Annoted DATATYPE_DECL] -> IdSets
ids_anDATATYPE_DECLs al =
(Set.unions $ map (ids_DATATYPE_DECL . item) al, Set.empty)
-- | get all ids of a sig items
ids_SIG_ITEMS :: (s -> IdSets) -> SIG_ITEMS s f -> IdSets
ids_SIG_ITEMS f si = case si of
Sort_items _ _ _ -> emptyIdSets
Op_items al _ -> (Set.unions $ map (ids_OP_ITEM . item) al, Set.empty)
Pred_items al _ -> (Set.empty, Set.unions $ map (ids_PRED_ITEM . item) al)
Datatype_items _ al _ -> ids_anDATATYPE_DECLs al
Ext_SIG_ITEMS s -> f s
-- | get all op ids of an op item
ids_OP_ITEM :: OP_ITEM f -> Set.Set Id
ids_OP_ITEM o = case o of
Op_decl ops _ _ _ -> Set.unions $ map single ops
Op_defn i _ _ _ -> single i
-- | same as singleton
single :: Id -> Set.Set Id
single i = Set.singleton i
-- | get all pred ids of a pred item
ids_PRED_ITEM :: PRED_ITEM f -> Set.Set Id
ids_PRED_ITEM p = case p of
Pred_decl preds _ _ -> Set.unions $ map single preds
Pred_defn i _ _ _ -> single i
ids_DATATYPE_DECL :: DATATYPE_DECL -> Set.Set Id
ids_DATATYPE_DECL (Datatype_decl _ al _) =
Set.unions $ map (ids_ALTERNATIVE . item) al
ids_ALTERNATIVE :: ALTERNATIVE -> Set.Set Id
ids_ALTERNATIVE a = case a of
Alt_construct _ i cs _ -> Set.unions $ single i : map ids_COMPONENTS cs
Subsorts _ _ -> Set.empty
ids_COMPONENTS :: COMPONENTS -> Set.Set Id
ids_COMPONENTS c = case c of
Cons_select _ l _ _ -> Set.unions $ map single l
Sort _ -> Set.empty
-- predicates get lower precedence
mkRule :: Id -> Rule
mkRule = mixRule 1
mkSingleArgRule :: Int -> Id -> Rule
mkSingleArgRule b ide = (protect ide, b, getPlainTokenList ide ++ [varTok])
mkArgsRule :: Int -> Id -> Rule
mkArgsRule b ide = (protect ide, b, getPlainTokenList ide
++ getTokenPlaceList tupleId)
singleArgId :: Id
singleArgId = mkId [exprTok, varTok]
multiArgsId :: Id
multiArgsId = mkId (exprTok : getPlainTokenList tupleId)
-- | additional scan rules
addRule :: GlobalAnnos -> [Rule] -> IdSets -> Token -> [Rule]
addRule ga uRules (ops, preds) tok =
let addR p = Set.fold ( \ i@(Id (t : _) _ _) ->
Map.insertWith (++) t
[mixRule p i, mkSingleArgRule p i, mkArgsRule p i])
lm = foldr ( \ r@(_, _, t : _) -> Map.insertWith (++) t [r])
Map.empty $ listRules 1 ga
(spreds, rpreds) = Set.partition isSimpleId preds
-- do not add simple ids as preds as these may be variables
-- with higher precedence
sops = Set.union ops spreds
varR = mkRule varId
m = Map.insert placeTok uRules
$ Map.insert varTok [varR]
$ Map.insert exprTok
[varR, mkRule singleArgId, mkRule multiArgsId]
$ addR 0 (addR 1 lm sops) rpreds
tId = mkId [tok]
tPId = mkId [tok, placeTok] -- prefix identifier
in (if isSimpleToken tok && not (Set.member tId sops)
then [mkRule tId] -- add rule for new variable
++ if Set.member tPId ops || Set.member tPId rpreds then [] else
[mkSingleArgRule 1 tId, mkArgsRule 1 tId]
-- add also rules for undeclared op
else []) ++ Map.findWithDefault [] tok m
-- insert only identifiers starting with a place
initRules :: IdSets -> Rules
initRules (opS, predS) =
let addR p = Set.fold ( \ i l -> mixRule p i : l)
in (addR 1 (addR 0 [mkRule typeId] predS) opS, [])
-- | construct rules from 'IdSets' to be put into a 'Mix' record
makeRules :: GlobalAnnos -> IdSets -> (Token -> [Rule], Rules)
makeRules ga (opS, predS) = let
(cOps, sOps) = Set.partition begPlace opS
(cPreds, sPreds) = Set.partition begPlace $ Set.difference predS opS
addR p = Set.fold ( \ i l ->
mkSingleArgRule p i : mkArgsRule p i : l)
uRules = addR 0 (addR 1 [] cOps) cPreds
in (addRule ga uRules (sOps, sPreds), initRules (cOps, cPreds))
-- | meaningful position of a term
posOfTerm :: TERM f -> Range
posOfTerm trm =
case trm of
Qual_var v _ ps -> if isNullRange ps then tokPos v else ps
Mixfix_term ts -> concatMapRange posOfTerm ts
Mixfix_qual_pred p -> posOfId $ predSymbName p
Application o _ ps -> if isNullRange ps then posOfId $ opSymbName o else ps
Conditional t1 _ t2 ps ->
if isNullRange ps then concatMapRange posOfTerm [t1, t2] else ps
Mixfix_parenthesized ts ps ->
if isNullRange ps then concatMapRange posOfTerm ts else ps
Mixfix_bracketed ts ps ->
if isNullRange ps then concatMapRange posOfTerm ts else ps
Mixfix_braced ts ps ->
if isNullRange ps then concatMapRange posOfTerm ts else ps
_ -> rangeOfTerm trm
-- | construct application
asAppl :: Id -> [TERM f] -> Range -> TERM f
asAppl f args ps = Application (Op_name f) args
$ if isNullRange ps then posOfId f else ps
-- | constructing the parse tree from (the final) parser state(s)
toAppl :: Id -> [TERM f] -> Range -> TERM f
toAppl ide ar qs =
if ide == singleArgId || ide == multiArgsId
then assert (length ar > 1) $
let har : tar = ar
hp = posOfTerm har
ps = appRange hp qs
in case har of
Application q ts p -> assert (null ts) $
Application q tar $ appRange ps p
Mixfix_qual_pred _ ->
Mixfix_term [har, Mixfix_parenthesized tar ps]
_ -> error "stateToAppl"
else asAppl ide ar qs
addType :: TERM f -> TERM f -> TERM f
addType tt t =
case tt of
Mixfix_sorted_term s ps -> Sorted_term t s ps
Mixfix_cast s ps -> Cast t s ps
_ -> error "addType"
-- | the type for mixfix resolution
type MixResolve f = GlobalAnnos -> (Token -> [Rule], Rules) -> f -> Result f
iterateCharts :: Pretty f => (f -> f)
-> MixResolve f -> GlobalAnnos -> [TERM f]
-> Chart (TERM f) -> Chart (TERM f)
iterateCharts par extR g terms c =
let self = iterateCharts par extR g
expand = expandPos Mixfix_token
oneStep = nextChart addType toAppl g c
ruleS = rules c
adder = addRules c
resolveTerm = resolveMixTrm par extR g (adder, ruleS)
in if null terms then c
else case head terms of
Mixfix_term ts -> self (ts ++ tail terms) c
Mixfix_bracketed ts ps ->
self (expand ("[", "]") ts ps ++ tail terms) c
Mixfix_braced ts ps ->
self (expand ("{", "}") ts ps ++ tail terms) c
Mixfix_parenthesized ts ps ->
case ts of
[h] -> let Result mds v = resolveTerm h
tNew = case v of
Nothing -> h
Just x -> x
c2 = self (tail terms) (oneStep (tNew, varTok))
in mixDiags mds c2
_ -> self (expand ("(", ")") ts ps ++ tail terms) c
h@(Conditional t1 f2 t3 ps) ->
let Result mds v =
do t4 <- resolveTerm t1
f5 <- resolveMixFrm par extR g (adder, ruleS) f2
t6 <- resolveTerm t3
return (Conditional t4 f5 t6 ps)
tNew = case v of
Nothing -> h
Just x -> x
c2 = self (tail terms)
(oneStep (tNew, varTok {tokPos = posOfTerm tNew}))
in mixDiags mds c2
Mixfix_token t -> let (ds1, trm) = convertMixfixToken
(literal_annos g) asAppl Mixfix_token t
c2 = self (tail terms) $ oneStep $
case trm of
Mixfix_token tok -> (trm, tok)
_ -> (trm, varTok)
in mixDiags ds1 c2
t@(Mixfix_sorted_term _ ps) -> self (tail terms)
(oneStep (t, typeTok {tokPos = ps}))
t@(Mixfix_cast _ ps) -> self (tail terms)
(oneStep (t, typeTok {tokPos = ps}))
t@(Qual_var _ _ ps) -> self (tail terms)
(oneStep (t, varTok {tokPos = ps}))
t@(Application (Qual_op_name _ _ ps) _ _) ->
self (tail terms) (oneStep (t, exprTok{tokPos = ps} ))
t@(Mixfix_qual_pred (Qual_pred_name _ _ ps)) ->
self (tail terms) (oneStep (t, exprTok{tokPos = ps} ))
Sorted_term t s ps ->
let Result mds v = resolveTerm t
tNew = Sorted_term (case v of
Nothing -> t
Just x -> x) s ps
c2 = self (tail terms) (oneStep (tNew, varTok))
in mixDiags mds c2
_ -> error "iterateCharts"
-- | construct 'IdSets' from op and pred identifiers
mkIdSets :: Set.Set Id -> Set.Set Id -> IdSets
mkIdSets ops preds = (ops, preds)
-- | top-level resolution like 'resolveMixTrm' that fails in case of diags
resolveMixfix :: Pretty f => (f -> f)
-> MixResolve f -> MixResolve (TERM f)
resolveMixfix par extR g ruleS t =
let r@(Result ds _) = resolveMixTrm par extR g ruleS t
in if null ds then r else Result ds Nothing
-- | basic term resolution that supports recursion without failure
resolveMixTrm :: Pretty f => (f -> f)
-> MixResolve f -> MixResolve (TERM f)
resolveMixTrm par extR ga (adder, ruleS) trm =
getResolved (showTerm par ga) (posOfTerm trm) toAppl
$ iterateCharts par extR ga [trm] $ initChart adder ruleS
showTerm :: Pretty f => (f -> f) -> GlobalAnnos -> TERM f -> ShowS
showTerm par ga = showGlobalDoc ga . mapTerm par
-- | top-level resolution like 'resolveMixFrm' that fails in case of diags
resolveFormula :: Pretty f => (f -> f)
-> MixResolve f -> MixResolve (FORMULA f)
resolveFormula par extR g ruleS f =
let r@(Result ds _) = resolveMixFrm par extR g ruleS f
in if null ds then r else Result ds Nothing
-- | basic formula resolution that supports recursion without failure
resolveMixFrm :: Pretty f => (f -> f)
-> MixResolve f -> MixResolve (FORMULA f)
resolveMixFrm par extR g ids frm =
let self = resolveMixFrm par extR g ids
resolveTerm = resolveMixTrm par extR g ids in
case frm of
Quantification q vs fOld ps ->
do fNew <- resolveMixFrm par extR g ids fOld
return $ Quantification q vs fNew ps
Conjunction fsOld ps ->
do fsNew <- mapM self fsOld
return $ Conjunction fsNew ps
Disjunction fsOld ps ->
do fsNew <- mapM self fsOld
return $ Disjunction fsNew ps
Implication f1 f2 b ps ->
do f3 <- self f1
f4 <- self f2
return $ Implication f3 f4 b ps
Equivalence f1 f2 ps ->
do f3 <- self f1
f4 <- self f2
return $ Equivalence f3 f4 ps
Negation fOld ps ->
do fNew <- self fOld
return $ Negation fNew ps
Predication sym tsOld ps ->
do tsNew <- mapM resolveTerm tsOld
return $ Predication sym tsNew ps
Definedness tOld ps ->
do tNew <- resolveTerm tOld
return $ Definedness tNew ps
Existl_equation t1 t2 ps ->
do t3 <- resolveTerm t1
t4 <- resolveTerm t2
return $ Existl_equation t3 t4 ps
Strong_equation t1 t2 ps ->
do t3 <- resolveTerm t1
t4 <- resolveTerm t2
return $ Strong_equation t3 t4 ps
Membership tOld s ps ->
do tNew <- resolveTerm tOld
return $ Membership tNew s ps
Mixfix_formula tOld ->
do tNew <- resolveTerm tOld
case tNew of
Application (Op_name ide) args ps ->
return $ Predication (Pred_name ide) args ps
Mixfix_qual_pred qide ->
return $ Predication qide [] nullRange
Mixfix_term [Mixfix_qual_pred qide,
Mixfix_parenthesized ts ps] ->
return $ Predication qide ts ps
_ -> fatal_error
("not a formula: " ++ showTerm par g tNew "")
(posOfTerm tNew)
ExtFORMULA f ->
do newF <- extR g ids f
return $ ExtFORMULA newF
f -> return f