MixfixParser.hs revision 8dddde4041af20b71009e6092440fc393f91666a
{- HetCATS/CASL/MixfixParser.hs
$Id$
Author: Christian Maeder
Year: 2002
Mixfix analysis of terms
Missing features:
- the positions of Ids from %string, %list, %number and %floating annotations
is not changed within applications (and might be misleading)
- using (Set State) instead of [State] avoids explosion
but detection of local ambiguities (that of subterms) is more difficult
solution: equal list states should be merged into a single state
that stores the local ambiguity
-}
module CASL.MixfixParser ( resolveFormula, resolveMixfix)
where
import CASL.AS_Basic_CASL
import Common.AS_Annotation
import Common.GlobalAnnotations
import Common.Result
import Common.Id
import Common.Lib.Map as Map hiding (filter, split, map)
import Common.Lib.Set as Set hiding (filter, split, single, insert)
import Common.Lexer
import Control.Monad
import Common.Lib.Parsec
import qualified Char as C
import Data.List(intersperse)
import Common.GlobalAnnotationsFunctions
import CASL.Formula(updFormulaPos)
import qualified CASL.ShowMixfix as ShowMixfix (showTerm)
showTerm :: GlobalAnnos -> TERM -> String
showTerm _ t = ShowMixfix.showTerm t ""
-- Earley Algorithm
data IdKind = IsPred | IsOp | IsBoth deriving (Eq, Ord)
data State = State (Id, IdKind) -- True means predicate
[Pos] -- positions of Id tokens
[TERM] -- currently collected arguments
-- both in reverse order
[Token] -- only tokens after the "dot" are given
Int -- index into the ParseMap/input string
instance Eq State where
State r1 _ _ t1 p1 == State r2 _ _ t2 p2 = (r1, t1, p1) == (r2, t2, p2)
instance Ord State where
State r1 _ _ t1 p1 <= State r2 _ _ t2 p2 = (r1, t1, p1) <= (r2, t2, p2)
termStr :: String
termStr = "(T)"
commaTok, parenTok, termTok :: Token
commaTok = mkSimpleId "," -- for list elements
termTok = mkSimpleId termStr
parenTok = mkSimpleId "(..)"
colonTok, asTok, varTok, opTok, predTok :: Token
colonTok = mkSimpleId ":"
asTok = mkSimpleId "as"
varTok = mkSimpleId "(v)"
opTok = mkSimpleId "(o)"
predTok = mkSimpleId "(p)"
mkState :: Int -> IdKind -> Id -> State
mkState i b ide = State (ide, b) [] [] (getTokenList termStr ide) i
mkApplState :: Int -> IdKind -> Id -> State
mkApplState i b ide = State (ide, b) [] []
(getTokenList place ide ++ [parenTok]) i
listToken :: Token
listToken = mkSimpleId "[]"
listId :: Id -> Id
-- unique id (usually "[]" yields two tokens)
listId i = Id [listToken] [i] []
isListId :: Id -> Bool
isListId (Id ts cs _) = not (null ts) && head ts == listToken && length cs == 1
listStates :: GlobalAnnos -> Int -> [State]
listStates g i =
let lists = list_lit $ literal_annos g
listState co toks = State (listId co, IsOp) [] [] toks i
in concatMap ( \ (bs, n, c) ->
let (b1, b2, cs) = getListBrackets bs
e = Id (b1 ++ b2) cs [] in
(if e == n then [] -- add b1 ++ b2 if its not yet included by n
else [listState c $ getTokenList place e]) ++
[listState c (b1 ++ [termTok] ++ b2)
, listState c (b1 ++ [termTok, commaTok] ++ b2)]
) $ Set.toList lists
-- these are the possible matches for the nonterminal TERM
-- the same states are used for the predictions
initialState :: GlobalAnnos -> ([Id], [Id], [Id]) -> Int -> [State]
initialState g (ops, preds, both) i =
let mkPredState b toks = State (Id toks [] [], b) [] [] toks i
mkTokState = mkPredState IsOp
in concat [mkTokState [parenTok] :
mkTokState [termTok, colonTok] :
mkTokState [termTok, asTok] :
mkTokState [varTok] :
mkTokState [opTok] :
mkTokState [opTok, parenTok] :
mkPredState IsPred [predTok] :
mkPredState IsPred [predTok, parenTok] :
listStates g i,
map (mkState i IsBoth) both,
map (mkApplState i IsBoth) both,
map (mkState i IsPred) preds,
map (mkApplState i IsPred) preds,
map (mkState i IsOp) ops,
map (mkApplState i IsOp) ops]
type ParseMap = Map Int [State]
lookUp :: (Ord a, MonadPlus m) => Map a (m b) -> a -> (m b)
lookUp ce k = findWithDefault mzero k ce
-- match (and shift) a token (or partially finished term)
scan :: TERM -> Int -> ParseMap -> ParseMap
scan trm i m =
let t = case trm of
Mixfix_token x -> x
Mixfix_sorted_term _ _ -> colonTok
Mixfix_cast _ _ -> asTok
Mixfix_parenthesized _ _ -> parenTok
Application (Qual_op_name _ _ _) [] _ -> opTok
Mixfix_qual_pred _ -> predTok
_ -> varTok
in
Map.insert (i+1) (
foldr (\ (State o b a ts k) l ->
if null ts || head ts /= t then l
else let p = tokPos t : b in
if t == commaTok && isListId (fst o) then
-- list elements separator
(State o p a
(termTok : commaTok : tail ts) k)
: (State o p a (termTok : tail ts) k) : l
else if t == parenTok then
(State o b (trm : a) (tail ts) k) : l
else if t == varTok || t == opTok || t == predTok then
(State o b [trm] (tail ts) k) : l
else if t == colonTok || t == asTok then
(State o b [mkTerm $ head a] [] k) : l
else (State o p a (tail ts) k) : l) []
(lookUp m i)) m
where mkTerm t1 = case trm of
Mixfix_sorted_term s ps -> Sorted_term t1 s ps
Mixfix_cast s ps -> Cast t1 s ps
_ -> t1
-- precedence graph stuff
checkArg :: GlobalAnnos -> AssocEither -> Id -> Id -> Bool
checkArg g dir op arg =
if arg == op
then isAssoc dir (assoc_annos g) op || not (isInfix op)
else
case precRel (prec_annos g) op arg of
Lower -> True
NoDirection -> not $ isInfix arg
_ -> False
checkAnyArg :: GlobalAnnos -> Id -> Id -> Bool
checkAnyArg g op arg =
case precRel (prec_annos g) op arg of
BothDirections -> isInfix op && op == arg
_ -> True
isLeftArg, isRightArg :: Id -> Int -> Bool
isLeftArg (Id ts _ _) n = n + 1 == (length $ takeWhile isPlace ts)
isRightArg (Id ts _ _) n = n == (length $ filter isPlace ts) -
(length $ takeWhile isPlace (reverse ts))
filterByPrec :: GlobalAnnos -> State -> State -> Bool
filterByPrec _ _ (State _ _ _ [] _) = False
filterByPrec g (State (argIde, predArg) _ _ _ _)
(State (opIde, predOp) _ args (hd:_) _) =
if hd == termTok then
if predArg == IsPred
then False
else if isListId opIde || isListId argIde || predOp == IsPred
then True else
let n = length args in
if isLeftArg opIde n then
if isPostfix opIde && (isPrefix argIde
|| isInfix argIde) then False
else checkArg g ALeft opIde argIde
else if isRightArg opIde n then
if isPrefix opIde && isInfix argIde then False
else checkArg g ARight opIde argIde
else checkAnyArg g opIde argIde
else False
-- reconstructing positions
setPlainIdePos :: Id -> [Pos] -> (Id, [Pos])
setPlainIdePos (Id ts cs _) ps =
let (places, toks) = span isPlace (reverse ts)
pls = reverse places
f = zipWith (\ a b -> up_pos (const b) a)
(ps1, ps2) = splitAt (length toks) ps
front = f (reverse toks) ps1
in if null cs then
let (ps3, ps4) = splitAt (length pls) ps2
in (Id (front ++ f pls ps3) [] [], ps4)
else let (newCs, ps3, ps4) = foldl (\ (prevCs, seps, rest) a ->
let (c1, qs) = setPlainIdePos a rest
in (c1: prevCs, head qs : seps, tail qs))
([], [head ps2], tail ps2) cs
(ps6, ps7) = splitAt (length pls) ps4
in (Id (front ++ f pls ps6) (reverse newCs) (reverse ps3), ps7)
setIdePos :: Id -> [TERM] -> [Pos] -> Id
setIdePos i@(Id ts _ _) ar ps =
let nt = length $ getTokenList place i
np = length ps
na = length $ filter isPlace ts
(_, toks) = span isPlace (reverse ts)
in if nt == np then -- literal places
let (newId, []) = setPlainIdePos i ps
in newId
else if np + na == nt && na == length ar then -- mixfix
let (newTps, rargs, rqs) = mergePos (reverse toks) ar ps
(newId, []) = setPlainIdePos i
(newTps ++ rqs ++ map posOfTerm rargs)
in newId
else error "setIdePos"
where mergePos [] args qs = ([], args, qs)
mergePos (t:rs) args qs =
if isPlace t then
let (tokps, rargs, rqs) = mergePos rs (tail args) qs
in (posOfTerm (head args) : tokps, rargs, rqs)
else let (tokps, rargs, rqs) = mergePos rs args (tail qs)
in (head qs : tokps, rargs, rqs)
-- constructing the parse tree from (the final) parser state(s)
stateToAppl :: State -> TERM
stateToAppl (State (ide, _) rs a _ _) =
let vs = getTokenList place ide
ar = reverse a
qs = reverse rs
in if vs == [termTok, colonTok]
|| vs == [termTok, asTok]
|| vs == [varTok]
|| vs == [opTok]
|| vs == [predTok]
|| vs == [parenTok]
then case head ar of
Mixfix_parenthesized ts _ -> if length ts == 1 then head ts
else head ar
har -> har
else if vs == [opTok, parenTok]
then let Application q _ _ = head ar
Mixfix_parenthesized ts ps = head a
in Application q ts ps
else if vs == [predTok, parenTok]
then Mixfix_term [head ar, head a]
else case ar of
[Mixfix_parenthesized ts ps] ->
Application (Op_name
(setIdePos ide ts qs))
ts ps
_ -> let newIde@(Id (t:_) _ _) = setIdePos ide ar qs
pos = if isPlace t then posOfTerm $ head ar
else tokPos t
in Application (Op_name newIde) ar [pos]
-- true mixfix
asListAppl :: GlobalAnnos -> State -> TERM
asListAppl g s@(State (i,_) bs a _ _) =
if isListId i then
let Id _ [f] _ = i
ListCons b c = getLiteralType g f
(b1, _, _) = getListBrackets b
cl = length $ getTokenList place b
nb1 = length b1
ra = reverse a
na = length ra
nb = length bs
mkList [] ps = asAppl c [] (head ps)
mkList (hd:tl) ps = asAppl f [hd, mkList tl (tail ps)] (head ps)
in if null a then asAppl c [] (if null bs then nullPos else last bs)
else if nb + 2 == cl + na then
let br = reverse bs
br1 = drop (nb1 - 1) br
in mkList (reverse a) br1
else error "asListAppl"
else stateToAppl s
-- final complete/reduction phase
-- when a grammar rule (mixfix Id) has been fully matched
collectArg :: GlobalAnnos -> ParseMap -> State -> [State]
-- pre: finished rule
collectArg g m s@(State _ _ _ _ k) =
map (\ (State o b a ts k1) ->
State o b (asListAppl g s : a)
(tail ts) k1)
$ filter (filterByPrec g s)
$ lookUp m k
compl :: GlobalAnnos -> ParseMap -> [State] -> [State]
compl g m l =
concat $ map (collectArg g m)
$ filter (\ (State _ _ _ ts _) -> null ts) l
complRec :: GlobalAnnos -> ParseMap -> [State] -> [State]
complRec g m l =
let l1 = compl g m l in
if null l1 then l else complRec g m l1 ++ l
complete :: GlobalAnnos -> Int -> ParseMap -> ParseMap
complete g i m =
Map.insert i (complRec g m $ lookUp m i) m
-- predict which rules/ids might match for (the) nonterminal(s) (termTok)
-- provided the "dot" is followed by a nonterminal
predict :: GlobalAnnos -> [Id] -> Int -> ParseMap -> ParseMap
predict g ops i m =
if i /= 0 && any (\ (State _ _ _ ts _) -> not (null ts)
&& head ts == termTok) (lookUp m i)
then insertWith (++) i (initialState g (ops, [], []) i) m
else m
type Chart = (Int, [Diagnosis], ParseMap)
nextState :: GlobalAnnos -> [Id] -> TERM
-> Chart -> Chart
nextState g ops trm (i, ds, m) =
let m1 = complete g (i+1) $
scan trm i $
predict g ops i m
in if null (lookUp m1 (i+1)) && null ds
then (i+1, Diag Error ("unexpected mixfix token: "
++ showTerm g trm)
(posOfTerm trm) : ds, m)
else (i+1, ds, m1)
type IdSet = (Set Id, Set Id, Set Id)
iterateStates :: GlobalAnnos -> IdSet -> Bool -> [TERM] -> Chart -> Chart
iterateStates g ids@(ops,_,both) maybeFormula terms c@(i, ds, m) =
let self = iterateStates g ids maybeFormula
expand = expandPos Mixfix_token
oneStep = nextState g (Set.toList $ Set.union ops both)
resolvePred = resolveMixTrm g ids
resolveTerm = resolvePred maybeFormula
in if null terms then c
else case head terms of
Mixfix_term ts -> self (ts ++ tail terms) c
Mixfix_bracketed ts ps ->
self (expand ("[", "]") ts ps ++ tail terms) c
Mixfix_braced ts ps ->
self (expand ("{", "}") ts ps ++ tail terms) c
Mixfix_parenthesized ts ps ->
let Result mds v =
do tsNew <- mapM resolveTerm ts
return $ Mixfix_parenthesized tsNew ps
tNew = case v of Nothing -> head terms
Just x -> x
in self (tail terms) (oneStep tNew (i, ds++mds, m))
Conditional t1 f2 t3 ps ->
let Result mds v =
do t4 <- resolvePred False t1
f5 <- resolveMixFrm g ids f2
t6 <- resolvePred False t3
return (Conditional t4 f5 t6 ps)
tNew = case v of Nothing -> head terms
Just x -> x
in self (tail terms) (oneStep tNew (i, ds++mds, m))
Mixfix_token t -> let (ds1, trm) =
convertMixfixToken (literal_annos g) t
in self (tail terms)
(oneStep trm (i, ds1++ds, m))
t -> self (tail terms) (oneStep t c)
posOfTerm :: TERM -> Pos
posOfTerm trm =
case trm of
Mixfix_token t -> tokPos t
Mixfix_term ts -> posOfTerm (head ts)
Simple_id i -> tokPos i
Mixfix_qual_pred p ->
case p of
Pred_name i -> posOfId i
Qual_pred_name _ _ ps -> first (Just ps)
Application (Qual_op_name _ _ ps) [] [] -> first (Just ps)
_ -> first $ get_pos_l trm
where first ps = case ps of
Nothing -> nullPos
Just l -> if null l then nullPos else head l
getAppls :: GlobalAnnos -> Int -> ParseMap -> [TERM]
getAppls g i m =
map (asListAppl g) $
filter (\ (State _ _ _ ts k) -> null ts && k == 0) $
lookUp m i
mkIdSet :: Set Id -> Set Id -> IdSet
mkIdSet ops preds =
let both = Set.intersection ops preds in
(Set.difference ops both, Set.difference preds both, both)
resolveMixfix :: GlobalAnnos -> Set Id -> Set Id -> Bool -> TERM -> Result TERM
resolveMixfix g ops preds maybeFormula t =
let r@(Result ds _) = resolveMixTrm g (mkIdSet ops preds) maybeFormula t
in if null ds then r else Result ds Nothing
resolveMixTrm :: GlobalAnnos -> IdSet -> Bool
-> TERM -> Result TERM
resolveMixTrm g ids@(ops, preds, both) mayBeFormula trm =
let (i, ds, m) = iterateStates g ids mayBeFormula [trm]
(0, [], Map.single 0 $ initialState g
(if mayBeFormula then (Set.toList ops,
Set.toList preds,
Set.toList both)
else (Set.toList $ Set.union ops both, [], [])) 0)
ts = getAppls g i m
in if null ts then if null ds then
plain_error trm ("no resolution for term: "
++ showTerm g trm)
(posOfTerm trm)
else Result ds (Just trm)
else if null $ tail ts then Result ds (Just (head ts))
else Result (Diag Error ("ambiguous mixfix term\n\t" ++
(concat
$ intersperse "\n\t"
$ map (showTerm g)
$ take 5 ts)) (posOfTerm trm) : ds) (Just trm)
resolveFormula :: GlobalAnnos -> Set Id -> Set Id -> FORMULA -> Result FORMULA
resolveFormula g ops preds f =
let r@(Result ds _) = resolveMixFrm g (mkIdSet ops preds) f
in if null ds then r else Result ds Nothing
resolveMixFrm :: GlobalAnnos -> IdSet-> FORMULA -> Result FORMULA
resolveMixFrm g ids@(ops, preds, both) frm =
let self = resolveMixFrm g ids
resolveTerm = resolveMixTrm g ids False in
case frm of
Quantification q vs fOld ps ->
let varIds = Set.fromList $ concatMap (\ (Var_decl va _ _) ->
map simpleIdToId va) vs
vps = Set.intersection varIds preds
newBoth = Set.union both vps
newIds = ((Set.\\) (Set.union ops varIds) newBoth,
(Set.\\) preds vps, newBoth)
in
do fNew <- resolveMixFrm g newIds fOld
return $ Quantification q vs fNew ps
Conjunction fsOld ps ->
do fsNew <- mapM self fsOld
return $ Conjunction fsNew ps
Disjunction fsOld ps ->
do fsNew <- mapM self fsOld
return $ Disjunction fsNew ps
Implication f1 f2 ps ->
do f3 <- self f1
f4 <- self f2
return $ Implication f3 f4 ps
Equivalence f1 f2 ps ->
do f3 <- self f1
f4 <- self f2
return $ Equivalence f3 f4 ps
Negation fOld ps ->
do fNew <- self fOld
return $ Negation fNew ps
Predication sym tsOld ps ->
do tsNew <- mapM resolveTerm tsOld
return $ Predication sym tsNew ps
Definedness tOld ps ->
do tNew <- resolveTerm tOld
return $ Definedness tNew ps
Existl_equation t1 t2 ps ->
do t3 <- resolveTerm t1
t4 <- resolveTerm t2
return $ Existl_equation t3 t4 ps
Strong_equation t1 t2 ps ->
do t3 <- resolveTerm t1
t4 <- resolveTerm t2
return $ Strong_equation t3 t4 ps
Membership tOld s ps ->
do tNew <- resolveTerm tOld
return $ Membership tNew s ps
Mixfix_formula tOld ->
do tNew <- resolveMixTrm g ids True tOld
mkPredication tNew
where mkPredication t =
case t of
Mixfix_parenthesized [t0] ps ->
do p <- mkPredication t0
return $ if null ps then p
else updFormulaPos (head ps) (last ps) p
Application (Op_name ide) args ps ->
let p = Predication (Pred_name ide) args ps in
if ide `Set.member` preds || ide `Set.member` both
then return p else
plain_error p
("not a predicate: " ++ showId ide "")
(posOfTerm t)
Mixfix_qual_pred qide ->
return $ Predication qide [] []
Mixfix_term [Mixfix_qual_pred qide,
Mixfix_parenthesized ts ps] ->
return $ Predication qide ts ps
Mixfix_term _ -> return $ Mixfix_formula t -- still wrong
_ -> plain_error (Mixfix_formula t)
("not a formula: " ++ showTerm g t)
(posOfTerm t)
f -> return f
-- ---------------------------------------------------------------
-- convert literals
-- ---------------------------------------------------------------
makeStringTerm :: Id -> Id -> Token -> TERM
makeStringTerm c f tok =
makeStrTerm (incSourceColumn sp 1) str
where
sp = tokPos tok
str = init (tail (tokStr tok))
makeStrTerm p l =
if null l then asAppl c [] p
else let (hd, tl) = splitString caslChar l
in asAppl f [asAppl (Id [Token ("'" ++ hd ++ "'") p] [] []) [] p,
makeStrTerm (incSourceColumn p $ length hd) tl] p
makeNumberTerm :: Id -> Token -> TERM
makeNumberTerm f t@(Token n p) =
case n of
[] -> error "makeNumberTerm"
[_] -> asAppl (Id [t] [] []) [] p
hd:tl -> asAppl f [asAppl (Id [Token [hd] p] [] []) [] p,
makeNumberTerm f (Token tl
(incSourceColumn p 1))] p
makeFraction :: Id -> Id -> Token -> TERM
makeFraction f d t@(Token s p) =
let (n, r) = span (\c -> c /= '.') s
dotOffset = length n
in if null r then makeNumberTerm f t
else asAppl d [makeNumberTerm f (Token n p),
makeNumberTerm f (Token (tail r)
(incSourceColumn p $ dotOffset + 1))]
$ incSourceColumn p dotOffset
makeSignedNumber :: Id -> Token -> TERM
makeSignedNumber f t@(Token n p) =
case n of
[] -> error "makeSignedNumber"
hd:tl ->
if hd == '-' || hd == '+' then
asAppl (Id [Token [hd] p] [] [])
[makeNumberTerm f (Token tl $ incSourceColumn p 1)] p
else makeNumberTerm f t
makeFloatTerm :: Id -> Id -> Id -> Token -> TERM
makeFloatTerm f d e t@(Token s p) =
let (m, r) = span (\c -> c /= 'E') s
offset = length m
in if null r then makeFraction f d t
else asAppl e [makeFraction f d (Token m p),
makeSignedNumber f (Token (tail r)
$ incSourceColumn p (offset + 1))]
$ incSourceColumn p offset
asAppl :: Id -> [TERM] -> Pos -> TERM
asAppl f args p = let pos = if null args then [] else [p]
in Application (Op_name f) args pos
-- analyse Mixfix_token
convertMixfixToken:: LiteralAnnos -> Token -> ([Diagnosis], TERM)
convertMixfixToken ga t =
if isString t then
case string_lit ga of
Nothing -> err "string"
Just (c, f) -> ([], makeStringTerm c f t)
else if isNumber t then
case number_lit ga of
Nothing -> err "number"
Just f -> if isFloating t then
case float_lit ga of
Nothing -> err "floating"
Just (d, e) -> ([], makeFloatTerm f d e t)
else ([], makeNumberTerm f t)
else ([], te)
where te = Mixfix_token t
err s = ([Diag Error ("missing %" ++ s ++ " annotation") (tokPos t)]
, te)