MixfixParser.hs revision 5cc369fbceee1b13bd0f06e43620c46541d1d4f8
{- |
Module : $Header$
Description : Mixfix analysis of terms
Copyright : Christian Maeder and Uni Bremen 2002-2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : experimental
Portability : portable
Mixfix analysis of terms
-}
module CASL.MixfixParser
( resolveFormula, resolveMixfix, MixResolve
, resolveMixTrm, resolveMixFrm
, IdSets, mkIdSets, emptyIdSets, unite, unite2
, makeRules, Mix (..), emptyMix, extendMix
, ids_BASIC_SPEC, ids_SIG_ITEMS, ids_OP_ITEM, ids_PRED_ITEM)
where
import CASL.AS_Basic_CASL
import CASL.ShowMixfix
import CASL.ToDoc ()
import Common.AS_Annotation
import Common.ConvertMixfixToken
import Common.DocUtils
import Common.Earley
import Common.GlobalAnnotations
import Common.Id
import Common.Result
import qualified Data.Map as Map
import qualified Data.Set as Set
import Data.Maybe
data Mix b s f e = MixRecord
{ getBaseIds :: b -> IdSets -- ^ ids of extra basic items
, getSigIds :: s -> IdSets -- ^ ids of extra sig items
, getExtIds :: e -> IdSets -- ^ ids of signature extensions
, mixRules :: (Token -> [Rule], Rules) -- ^ rules for Earley
, putParen :: f -> f -- ^ parenthesize extended formula
, mixResolve :: MixResolve f -- ^ resolve extended formula
}
-- | an initially empty record
emptyMix :: Mix b s f e
emptyMix = MixRecord
{ getBaseIds = const emptyIdSets
, getSigIds = const emptyIdSets
, getExtIds = const emptyIdSets
, mixRules = error "emptyMix"
, putParen = id
, mixResolve = const $ const return
}
extendMix :: Set.Set Token -> Mix b s f e -> Mix b s f e
extendMix ts r = r
{ mixRules = extendRules ts $ mixRules r
, mixResolve = extendMixResolve ts $ mixResolve r }
-- precompute non-simple op and pred identifier for mixfix rules
-- | the precomputed sets of constant, op, and pred identifiers
type IdSets = ((Set.Set Id, Set.Set Id), Set.Set Id) -- ops are first component
-- | the empty 'IdSets'
emptyIdSets :: IdSets
emptyIdSets = let e = Set.empty in ((e, e), e)
unite2 :: [(Set.Set Id, Set.Set Id)] -> (Set.Set Id, Set.Set Id)
unite2 l = (Set.unions $ map fst l, Set.unions $ map snd l)
-- | union 'IdSets'
unite :: [IdSets] -> IdSets
unite l = (unite2 $ map fst l, Set.unions $ map snd l)
-- | get all ids of a basic spec
ids_BASIC_SPEC :: (b -> IdSets) -> (s -> IdSets) -> BASIC_SPEC b s f -> IdSets
ids_BASIC_SPEC f g (Basic_spec al) =
unite $ map (ids_BASIC_ITEMS f g . item) al
ids_BASIC_ITEMS :: (b -> IdSets) -> (s -> IdSets)
-> BASIC_ITEMS b s f -> IdSets
ids_BASIC_ITEMS f g bi = case bi of
Sig_items sis -> ids_SIG_ITEMS g sis
Free_datatype _ al _ -> ids_anDATATYPE_DECLs al
Sort_gen al _ -> unite $ map (ids_SIG_ITEMS g . item) al
Ext_BASIC_ITEMS b -> f b
_ -> emptyIdSets
ids_anDATATYPE_DECLs :: [Annoted DATATYPE_DECL] -> IdSets
ids_anDATATYPE_DECLs al =
(unite2 $ map (ids_DATATYPE_DECL . item) al, Set.empty)
-- | get all ids of a sig items
ids_SIG_ITEMS :: (s -> IdSets) -> SIG_ITEMS s f -> IdSets
ids_SIG_ITEMS f si = let e = Set.empty in case si of
Sort_items _ _ _ -> emptyIdSets
Op_items al _ -> (unite2 $ map (ids_OP_ITEM . item) al, e)
Pred_items al _ -> ((e, e), Set.unions $ map (ids_PRED_ITEM . item) al)
Datatype_items _ al _ -> ids_anDATATYPE_DECLs al
Ext_SIG_ITEMS s -> f s
-- | get all op ids of an op item
ids_OP_ITEM :: OP_ITEM f -> (Set.Set Id, Set.Set Id)
ids_OP_ITEM o = let e = Set.empty in case o of
Op_decl ops (Op_type _ args _ _) _ _ ->
let s = Set.fromList ops in
if null args then (s, e) else (e, s)
Op_defn i (Op_head _ args _ _) _ _ ->
let s = Set.singleton i in
if null args then (s, e) else (e, s)
-- | get all pred ids of a pred item
ids_PRED_ITEM :: PRED_ITEM f -> Set.Set Id
ids_PRED_ITEM p = case p of
Pred_decl preds _ _ -> Set.unions $ map Set.singleton preds
Pred_defn i _ _ _ -> Set.singleton i
ids_DATATYPE_DECL :: DATATYPE_DECL -> (Set.Set Id, Set.Set Id)
ids_DATATYPE_DECL (Datatype_decl _ al _) =
unite2 $ map (ids_ALTERNATIVE . item) al
ids_ALTERNATIVE :: ALTERNATIVE -> (Set.Set Id, Set.Set Id)
ids_ALTERNATIVE a = let e = Set.empty in case a of
Alt_construct _ i cs _ -> let s = Set.singleton i in
if null cs then (s, e) else (e, Set.unions $ s : map ids_COMPONENTS cs)
Subsorts _ _ -> (e, e)
ids_COMPONENTS :: COMPONENTS -> Set.Set Id
ids_COMPONENTS c = case c of
Cons_select _ l _ _ -> Set.unions $ map Set.singleton l
Sort _ -> Set.empty
-- predicates get lower precedence
mkRule :: Id -> Rule
mkRule = mixRule 1
mkSingleArgRule :: Int -> Id -> Rule
mkSingleArgRule b ide = (protect ide, b, getPlainTokenList ide ++ [varTok])
mkArgsRule :: Int -> Id -> Rule
mkArgsRule b ide =
(protect ide, b, getPlainTokenList ide ++ getTokenPlaceList tupleId)
singleArgId :: Id
singleArgId = mkId [exprTok, varTok]
multiArgsId :: Id
multiArgsId = mkId (exprTok : getPlainTokenList tupleId)
-- | additional scan rules
addRule :: GlobalAnnos -> [Rule] -> Bool -> IdSets -> Token -> [Rule]
addRule ga uRules hasInvisible ((consts, ops), preds) tok =
let addP = Set.fold (\ i@(Id (t : _) _ _) ->
Map.insertWith (++) t
[ mixRule (if Set.member i consts then 1 else 0) i
, mkSingleArgRule 0 i, mkArgsRule 0 i])
addO = Set.fold (\ i@(Id (t : _) _ _) ->
Map.insertWith (++) t
$ [mkRule i | not (isSimpleId i)
|| Set.member i (Set.union consts preds) ]
++ [mkSingleArgRule 1 i, mkArgsRule 1 i])
addC = Set.fold (\ i@(Id (t : _) _ _) ->
Map.insertWith (++) t [mkRule i])
lm = foldr ( \ r@(_, _, t : _) -> Map.insertWith (++) t [r])
Map.empty $ listRules 1 ga
(spreds, rpreds) = Set.partition isSimpleId preds
-- do not add simple ids as preds as these may be variables
-- with higher precedence
ops2 = Set.union ops spreds
sops = Set.union consts ops2
rConsts = Set.difference consts $ Set.union ops preds
varR = mkRule varId
m = Map.insert placeTok uRules
$ Map.insert varTok [varR]
$ Map.insert exprTok
[varR, mkRule singleArgId, mkRule multiArgsId]
$ addP (addC (addO lm ops2) rConsts) $ Set.difference rpreds ops
tId = mkId [tok]
tPId = mkId [tok, placeTok] -- prefix identifier
in (if isSimpleToken tok && not (Set.member tId sops)
then if hasInvisible then [] else mkRule tId
-- add rule for unknown constant or variable
: if Set.member tPId ops || Set.member tPId rpreds
then [] else [mkSingleArgRule 1 tId, mkArgsRule 1 tId]
-- add also rules for undeclared op
else []) ++ Map.findWithDefault [] tok m
-- insert only identifiers starting with a place
initRules :: (Set.Set Id, Set.Set Id) -> Rules
initRules (opS, predS) =
let addR p = Set.fold ((:) . mixRule p)
in (addR 1 (addR 0 [mkRule typeId] predS) opS, [])
-- | construct rules from 'IdSets' to be put into a 'Mix' record
makeRules :: GlobalAnnos -> IdSets -> (Token -> [Rule], Rules)
makeRules ga ((constS, opS), predS) = let
(cOps, sOps) = Set.partition begPlace opS
(cPreds, sPreds) = Set.partition begPlace $ Set.difference predS opS
addR p = Set.fold ( \ i l ->
mkSingleArgRule p i : mkArgsRule p i : l)
uRules = addR 0 (addR 1 [] cOps) cPreds
in (addRule ga uRules (Set.member applId $ Set.union cOps cPreds)
((constS, sOps), sPreds), initRules (cOps, cPreds))
-- | construct application
asAppl :: Id -> [TERM f] -> Range -> TERM f
asAppl f args ps = Application (Op_name f) args
$ if isNullRange ps then posOfId f else ps
-- | constructing the parse tree from (the final) parser state(s)
toAppl :: GetRange f => Id -> [TERM f] -> Range -> TERM f
toAppl ide ar ps =
if elem ide [singleArgId, multiArgsId]
then case ar of
har : tar -> case har of
Application q [] p ->
Application q tar $ appRange ps p
Mixfix_qual_pred _ ->
Mixfix_term [har, Mixfix_parenthesized tar ps]
_ -> error "stateToAppl"
_ -> error "stateToAppl2"
else asAppl ide ar ps
addType :: TERM f -> TERM f -> TERM f
addType tt t =
case tt of
Mixfix_sorted_term s ps -> Sorted_term t s ps
Mixfix_cast s ps -> Cast t s ps
_ -> error "addType"
-- | the type for mixfix resolution
type MixResolve f = GlobalAnnos -> (Token -> [Rule], Rules) -> f -> Result f
iterateCharts :: (GetRange f, Pretty f) => (f -> f)
-> MixResolve f -> GlobalAnnos -> [TERM f]
-> Chart (TERM f) -> Chart (TERM f)
iterateCharts par extR g terms c =
let self = iterateCharts par extR g
expand = expandPos Mixfix_token
oneStep = nextChart addType toAppl g c
ruleS = rules c
adder = addRules c
resolveTerm = resolveMixTrm par extR g (adder, ruleS)
in case terms of
[] -> c
hd : tl -> case hd of
Mixfix_term ts -> self (ts ++ tl) c
Mixfix_bracketed ts ps ->
self (expand ("[", "]") ts ps ++ tl) c
Mixfix_braced ts ps ->
self (expand ("{", "}") ts ps ++ tl) c
Mixfix_parenthesized ts ps -> case ts of
[h] -> let
Result mds v = resolveTerm h
c2 = self tl (oneStep (fromMaybe h v, varTok {tokPos = ps}))
in mixDiags mds c2
_ -> self (expand ("(", ")") ts ps ++ tl) c
h@(Conditional t1 f2 t3 ps) -> let
Result mds v = do
t4 <- resolveTerm t1
f5 <- resolveMixFrm par extR g (adder, ruleS) f2
t6 <- resolveTerm t3
return (Conditional t4 f5 t6 ps)
c2 = self tl
(oneStep (fromMaybe h v, varTok {tokPos = ps}))
in mixDiags mds c2
Mixfix_token t -> let
(ds1, trm) = convertMixfixToken (literal_annos g) asAppl
Mixfix_token t
c2 = self tl $ oneStep $ case trm of
Mixfix_token tok -> (trm, tok)
_ -> (trm, varTok {tokPos = tokPos t})
in mixDiags ds1 c2
t@(Mixfix_sorted_term _ ps) ->
self tl (oneStep (t, typeTok {tokPos = ps}))
t@(Mixfix_cast _ ps) ->
self tl (oneStep (t, typeTok {tokPos = ps}))
t@(Qual_var _ _ ps) ->
self tl (oneStep (t, varTok {tokPos = ps}))
t@(Application (Qual_op_name _ _ ps) _ _) ->
self tl (oneStep (t, exprTok {tokPos = ps} ))
t@(Mixfix_qual_pred (Qual_pred_name _ _ ps)) ->
self tl (oneStep (t, exprTok {tokPos = ps} ))
Sorted_term t s ps -> let
Result mds v = resolveTerm t
tNew = Sorted_term (fromMaybe t v) s ps
c2 = self tl (oneStep (tNew, varTok {tokPos = ps}))
in mixDiags mds c2
_ -> error "iterateCharts"
-- | construct 'IdSets' from op and pred identifiers
mkIdSets :: Set.Set Id -> Set.Set Id -> Set.Set Id -> IdSets
mkIdSets consts ops preds = ((consts, ops), preds)
-- | top-level resolution like 'resolveMixTrm' that fails in case of diags
resolveMixfix :: (GetRange f, Pretty f) => (f -> f)
-> MixResolve f -> MixResolve (TERM f)
resolveMixfix par extR g ruleS t =
let r@(Result ds _) = resolveMixTrm par extR g ruleS t
in if null ds then r else Result ds Nothing
-- | basic term resolution that supports recursion without failure
resolveMixTrm :: (GetRange f, Pretty f) => (f -> f)
-> MixResolve f -> MixResolve (TERM f)
resolveMixTrm par extR ga (adder, ruleS) trm =
getResolved (showTerm par ga) (getRangeSpan trm) toAppl
$ iterateCharts par extR ga [trm] $ initChart adder ruleS
showTerm :: Pretty f => (f -> f) -> GlobalAnnos -> TERM f -> ShowS
showTerm par ga = showGlobalDoc ga . mapTerm par
-- | top-level resolution like 'resolveMixFrm' that fails in case of diags
resolveFormula :: (GetRange f, Pretty f) => (f -> f)
-> MixResolve f -> MixResolve (FORMULA f)
resolveFormula par extR g ruleS f =
let r@(Result ds _) = resolveMixFrm par extR g ruleS f
in if null ds then r else Result ds Nothing
varDeclTokens :: [VAR_DECL] -> Set.Set Token
varDeclTokens = Set.unions . map (\ (Var_decl vs _ _) -> Set.fromList vs)
extendRules :: Set.Set Token -> (Token -> [Rule], Rules)
-> (Token -> [Rule], Rules)
extendRules ts (f, rs) =
(\ t -> let
l = f t
r = mkRule $ mkId [t]
in if Set.member t ts then
if elem r l then l else r : l
else l, rs)
extendMixResolve :: Set.Set Token -> MixResolve f -> MixResolve f
extendMixResolve ts f ga = f ga . extendRules ts
-- | basic formula resolution that supports recursion without failure
resolveMixFrm :: (GetRange f, Pretty f) => (f -> f)
-> MixResolve f -> MixResolve (FORMULA f)
resolveMixFrm par extR g ids frm =
let self = resolveMixFrm par extR g ids
resolveTerm = resolveMixTrm par extR g ids in
case frm of
Quantification q vs fOld ps ->
do let ts = varDeclTokens vs
fNew <- resolveMixFrm par (extendMixResolve ts extR)
g (extendRules ts ids) fOld
return $ Quantification q vs fNew ps
Conjunction fsOld ps ->
do fsNew <- mapM self fsOld
return $ Conjunction fsNew ps
Disjunction fsOld ps ->
do fsNew <- mapM self fsOld
return $ Disjunction fsNew ps
Implication f1 f2 b ps ->
do f3 <- self f1
f4 <- self f2
return $ Implication f3 f4 b ps
Equivalence f1 f2 ps ->
do f3 <- self f1
f4 <- self f2
return $ Equivalence f3 f4 ps
Negation fOld ps ->
do fNew <- self fOld
return $ Negation fNew ps
Predication sym tsOld ps ->
do tsNew <- mapM resolveTerm tsOld
return $ Predication sym tsNew ps
Definedness tOld ps ->
do tNew <- resolveTerm tOld
return $ Definedness tNew ps
Existl_equation t1 t2 ps ->
do t3 <- resolveTerm t1
t4 <- resolveTerm t2
return $ Existl_equation t3 t4 ps
Strong_equation t1 t2 ps ->
do t3 <- resolveTerm t1
t4 <- resolveTerm t2
return $ Strong_equation t3 t4 ps
Membership tOld s ps ->
do tNew <- resolveTerm tOld
return $ Membership tNew s ps
Mixfix_formula tOld ->
do tNew <- resolveTerm tOld
case tNew of
Application (Op_name ide) args ps ->
return $ Predication (Pred_name ide) args ps
Mixfix_qual_pred qide ->
return $ Predication qide [] nullRange
Mixfix_term [Mixfix_qual_pred qide,
Mixfix_parenthesized ts ps] ->
return $ Predication qide ts ps
_ -> fatal_error
("not a formula: " ++ showTerm par g tNew "")
(getRangeSpan tNew)
ExtFORMULA f ->
do newF <- extR g ids f
return $ ExtFORMULA newF
f -> return f