Induction.hs revision 6baa40b661fa23201bf185527f0416006d55f5cd
{- |
Module : ./CASL/Induction.hs
Description : Derive induction schemes from sort generation constraints
Copyright : (c) Till Mossakowski, Rainer Grabbe and Uni Bremen 2002-2006
License : GPLv2 or higher, see LICENSE.txt
Maintainer : till@informatik.uni-bremen.de
Stability : provisional
Portability : portable
We provide both second-order induction schemes as well as their
instantiation to specific first-order formulas.
-}
module CASL.Induction (inductionScheme, generateInductionLemmas, substitute) where
import CASL.AS_Basic_CASL
import CASL.Sign
import CASL.Fold
import CASL.Quantification (flatVAR_DECLs)
import CASL.ToDoc
import Common.AS_Annotation as AS_Anno
import Common.Id
import Common.Utils (combine, number)
import qualified Data.Set as Set
import Data.List
import Data.Maybe
{- | derive a second-order induction scheme from a sort generation constraint
the second-order predicate variables are represented as predicate
symbols P[s], where s is a sort -}
inductionScheme :: FormExtension f => [Constraint] -> FORMULA f
inductionScheme constrs =
induction $ map predSubst constrs
where sorts = map newSort constrs
injective = isInjectiveList sorts
predSubst constr =
(constr, \ t -> Predication predSymb [t] nullRange)
where
predSymb = Qual_pred_name ident typ nullRange
Id ts cs ps =
if injective then newSort constr else origSort constr
ident = Id [mkSimpleId $ genNamePrefix ++ "P_"
++ showId (Id ts [] ps) ""] cs ps
typ = Pred_type [newSort constr] nullRange
{- | Function for derivation of first-order instances of sort generation
constraints.
Given a list of formulas with a free sorted variable, instantiate the
sort generation constraint for this list of formulas
It is assumed that the (original) sorts of the constraint
match the sorts of the free variables -}
instantiateSortGen :: FormExtension f
=> [(Constraint, (FORMULA f, (VAR, SORT)))] -> FORMULA f
instantiateSortGen phis =
induction (map substFormula phis)
where substFormula (c, (phi, (v, s))) = (c, \ t -> substitute v s t phi)
-- | substitute a term for a variable in a formula
substitute :: FormExtension f => VAR -> SORT -> TERM f -> FORMULA f -> FORMULA f
substitute v s t = foldFormula
(mapRecord id) { foldQual_var = \ t2 v2 s2 _ ->
if v == v2 && s == s2 then t else t2
, foldQuantification = \ t2 q vs p r ->
if elem (v, s) $ flatVAR_DECLs vs
then t2 else Quantification q vs p r
}
{- | derive an induction scheme from a sort generation constraint
using substitutions as induction predicates -}
induction :: FormExtension f => [(Constraint, TERM f -> FORMULA f)] -> FORMULA f
induction constrSubsts =
let mkVar i = mkSimpleId ("x_" ++ show i)
sortInfo = map (\ ((cs, sub), i) -> (sub, (mkVar i, newSort cs)))
$ number constrSubsts
mkConclusion (subst, v) =
mkForall [uncurry mkVarDecl v] $ subst $ uncurry mkVarTerm v
inductionConclusion = conjunct $ map mkConclusion sortInfo
inductionPremises = map (mkPrems $ map snd constrSubsts) constrSubsts
inductionPremise = conjunct $ concat inductionPremises
in mkImpl inductionPremise inductionConclusion
{- | construct premise set for the induction scheme
for one sort in the constraint -}
mkPrems :: FormExtension f => [TERM f -> FORMULA f]
-> (Constraint, TERM f -> FORMULA f) -> [FORMULA f]
mkPrems substs (constr, sub) = map (mkPrem substs sub) (opSymbs constr)
-- | construct a premise for the induction scheme for one constructor
mkPrem :: FormExtension f => [TERM f -> FORMULA f] -> (TERM f -> FORMULA f)
-> (OP_SYMB, [Int]) -> FORMULA f
mkPrem substs subst (opSym@(Qual_op_name _ (Op_type _ argTypes _ _) _), idx) =
mkForall qVars phi
where
qVars = map (\ (a, i) -> mkVarDeclStr ("y_" ++ show i) a) $ number argTypes
phi = if null indHyps then indConcl
else mkImpl (conjunct indHyps) indConcl
indConcl = subst $ mkAppl opSym $ map toQualVar qVars
indHyps = mapMaybe indHyp (zip qVars idx)
indHyp (v1, i) =
if i < 0 then Nothing -- leave out sorts from outside the constraint
else Just $ (substs !! i) $ toQualVar v1
mkPrem _ _ (opSym, _) =
error ("CASL.Induction. mkPrems: "
++ "unqualified operation symbol occuring in constraint: "
++ show opSym)
-- | for goals try to generate additional implications based on induction
generateInductionLemmas :: FormExtension f => Bool
-> (Sign f e, [Named (FORMULA f)]) -> (Sign f e, [Named (FORMULA f)])
generateInductionLemmas b (sig, sens) = let
sortGens = foldr (\ s cs -> case sentence s of
Sort_gen_ax c _ -> c : cs
_ -> cs) [] axs
(axs, goals) = partition isAxiom sens
in (sig, (if b then sens else axs)
++ generateInductionLemmasAux b sortGens goals)
generateInductionLemmasAux
:: FormExtension f => Bool
-- ^ if True create additional implication otherwise replace goals
-> [[Constraint]] -- ^ the constraints of a theory
-> [AS_Anno.Named (FORMULA f)] -- ^ all goals of a theory
-> [AS_Anno.Named (FORMULA f)]
{- ^ all the generated induction lemmas
and the labels are derived from the goal-names -}
generateInductionLemmasAux b sort_gen_axs goals = let
findVar s [] = error ("CASL.generateInductionLemmas:\n"
++ "No VAR found of SORT " ++ show s ++ "!")
findVar s ((vl, sl) : lst) = if s == sl then vl else findVar s lst
removeVarsort v s f = case f of
Quantification Universal varDecls formula rng ->
let vd' = newVarDecls varDecls
in if null vd' then formula
else Quantification Universal vd' formula rng
_ -> f
where
newVarDecls = filter (\ (Var_decl vs _ _) -> not $ null vs) .
map (\ var_decl@(Var_decl vars varsort r) ->
if varsort == s
then Var_decl (filter (/= v) vars) s r
else var_decl)
(uniQuantGoals, restGoals) =
foldr ( \ goal (ul, rl) -> case sentence goal of
Quantification Universal varDecl _ _ ->
((goal, flatVAR_DECLs varDecl) : ul, rl)
_ -> (ul, goal : rl)) ([], []) goals
{- For each constraint we get a list of goals out of uniQuantGoals
which contain the constraint's newSort. Afterwards all combinations
are created. -}
constraintGoals = combine
. map (\ c -> filter (any ((newSort c ==) . snd) . snd)
uniQuantGoals)
combis =
{- returns big list containing tuples of constraints and a matching
combination (list) of goals. -}
concatMap (\ c -> map (\ combi -> (c, combi)) $ constraintGoals c)
sort_gen_axs
singleDts = map head $ filter isSingle sort_gen_axs
indSorts = Set.fromList $ map newSort singleDts
(simpleIndGoals, rest2) = foldr (\ (gs, vs) (ul, rl) ->
case dropWhile (not . (`Set.member` indSorts) . snd) vs of
[] -> (ul, gs : rl)
(v, s) : _ -> case find ((== s) . newSort) singleDts of
Nothing -> (ul, gs : rl)
Just c -> ((gs, (v, s), c) : ul, rl)) ([], []) uniQuantGoals
toIndPrem (gs, (v, s), c) =
let f = removeVarsort v s $ sentence gs
sb t = substitute v s t f
ps = mkPrems [sb] (c, sb)
in gs { sentence = conjunct ps }
in if b then
map (\ (cons, formulas) ->
let formula = instantiateSortGen
$ map (\ (c, (f, varsorts)) ->
let s = newSort c
vs = findVar s varsorts
in (c, (removeVarsort vs s $ sentence f, (vs, s))))
$ zip cons formulas
sName = tail $ concatMap (('_' :) . senAttr . fst) formulas
++ "_induction"
in makeNamed sName formula
) combis
else map toIndPrem simpleIndGoals ++ rest2 ++ restGoals