TerminationProof.hs revision 9a7e1781e935fea3b9b296fd9593e3ead8738413
{- |
Module : $Header$
Description : termination proofs for equation systems, using AProVE
Copyright : (c) Mingyi Liu and Till Mossakowski and Uni Bremen 2004-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : xinga@informatik.uni-bremen.de
Stability : provisional
Portability : portable
Termination proofs for equation systems, using AProVE
-}
module CASL.CCC.TerminationProof where
import CASL.ToDoc ()
import CASL.AS_Basic_CASL
-- import Common.DocUtils
import CASL.CCC.TermFormula
import Common.Id
import Common.Utils (getEnvDef, nubOrd)
import System.Cmd
import System.IO.Unsafe
import System.Directory
-- import Debug.Trace
{-
Automatic termination proof
using AProVE, see http://aprove.informatik.rwth-aachen.de/
interface to AProVE system, using system
translate CASL signature to AProVE Input Language,
CASL formulas to AProVE term rewrite systems(TRS),
if a equation system is terminal, then it is computable.
-}
terminationProof :: Ord f => [FORMULA f] -> [(TERM f,FORMULA f)] -> Maybe Bool
terminationProof fs dms
| null fs = Just True
| proof == "YES\n" = Just True
| proof == "MAYBE\n" = Nothing
| proof == "NO\n" = Just False
| otherwise = Nothing
where
allVar vs = nubOrd $ concat vs
varsStr vars str
| null vars = str
| otherwise = if null str then varsStr (tail vars) (tokStr $ head vars)
else varsStr (tail vars) (str ++ " " ++
(tokStr $ head vars))
axiomTrs axs str
| null axs = str
| otherwise =
axiomTrs (tail axs) (str ++ (axiom_trs (head axs) dms) ++ "\n")
axhead = "(RULES\neq(t,t) -> true\n" ++
"eq(_,_) -> false\n" ++
"when_else(t1,true,t2) -> t1\n" ++
"when_else(t1,false,t2) -> t2\n"
c_vars = ("(VAR t t1 t2 " ++ (varsStr (allVar $ map varOfAxiom fs) "") ++
")\n")
c_axms = axhead ++ (axiomTrs fs "") ++ ")\n"
ipath = "/Input.trs"
opath = "/Result.txt"
proof = unsafePerformIO (do
tmpDir <- getTemporaryDirectory
writeFile (tmpDir ++ ipath) (c_vars ++ c_axms)
aprovePath <- getEnvDef "HETS_APROVE"
system ("java -jar " ++ aprovePath ++ " -u cli -m " ++
"wst -p plain " ++ tmpDir ++
ipath ++ " | head -n 1 > " ++ tmpDir ++ opath)
readFile (tmpDir ++ opath))
-- | get the name of a operation symbol
opSymName :: OP_SYMB -> String
opSymName os = case os of
Op_name on -> idStr on
Qual_op_name on _ _ -> idStr on
-- | get the name of a predicate symbol
predSymName :: PRED_SYMB -> String
predSymName ps = case ps of
Pred_name pn -> idStr pn
Qual_pred_name pn _ _ -> idStr pn
-- | translate a casl term to a term of TRS(Terme Rewrite Systems)
term_trs :: TERM f -> String
term_trs t =
case (term t) of
Qual_var var _ _ -> tokStr var
Application (Op_name opn) [] _ -> idStr opn
Application (Qual_op_name opn _ _) ts _ ->
if null ts then (idStr opn)
else ((idStr opn) ++ "(" ++ terms_pa ts ++")")
Sorted_term t' _ _ -> term_trs t'
Cast t' _ _ -> term_trs t'
Conditional t1 f t2 _ ->
("when_else("++(term_trs t1)++","++
(t_f_str f)++","++(term_trs t2)++")")
_ -> error "CASL.CCC.TerminationProof.<term_trs>"
where t_f_str f=case f of -- condition of a term
Strong_equation t1 t2 _ ->
("eq("++(term_trs t1)++","++(term_trs t2)++")")
Predication ps ts _ ->
if null ts then predSymName ps
else ((predSymName ps) ++ "(" ++
(terms_pa ts) ++ ")")
_ -> error "CASL.CCC.TerminationProof.<term_trs_cond>"
-- | translate a list of casl terms to the patterns of a term in TRS
terms_pa :: [TERM f] -> String
terms_pa ts =
if null ts then ""
else tail $ concatMap ((\s->',':s) . term_trs) ts
-- | translate a casl axiom to TRS-rule:
-- a rule without condition is represented by "A -> B" in
-- Term Rewrite Systems; if there are some conditions, then
-- follow the conditions after the symbol "|".
-- For example : "A -> B | C -> D, E -> F, ..."
axiom_trs :: (Eq f) => FORMULA f -> [(TERM f,FORMULA f)] -> String
axiom_trs f doms =
case (quanti f) of
Quantification _ _ f' _ -> axiom_trs f' doms
Conjunction fs _ -> conj_sub fs ++ " -> true"
Disjunction fs _ -> disj_sub fs ++ " -> true"
Implication f1 f2 _ _ ->
case f2 of
Equivalence f3 f4 _ ->
(axiom_trs f3 doms) ++ " | " ++
(axiom_trs f1 doms) ++ ", " ++
(axiom_trs f4 doms)
_ ->
case f1 of
Definedness t _ ->
let dm = filter (\d -> sameOps_App t (fst d)) doms
phi = snd $ head dm
te = fst $ head dm
p1 = arguOfTerm te
p2 = arguOfTerm t
st = zip p2 p1
in if not $ null dm
then (axiom_trs f2 doms) ++ " | " ++
(axiom_trs (substiF st phi) doms)
else (axiom_trs f2 doms) ++
" | def(" ++ (term_trs t) ++ ") -> open"
_ -> (axiom_trs f2 doms) ++ " | " ++
(axiom_trs f1 doms)
Equivalence f1 f2 _ -> (axiom_trs f1 doms) ++ " | " ++ (axiom_trs f2 doms)
Negation f' _ ->
case f' of
Conjunction fs _ -> conj_sub fs ++ " -> false"
Disjunction fs _ -> disj_sub fs ++ " -> false"
Predication p_s ts _ ->
if null ts
then (predSymName p_s) ++ " -> false"
else (predSymName p_s) ++ "(" ++ (terms_pa ts) ++ ") -> false"
Strong_equation t1 t2 _ ->
"eq(" ++ (term_trs t1) ++ "," ++ (term_trs t2) ++ ") -> false"
Definedness t _ ->
(term_trs t) ++ " -> undefined"
_ -> error "CASL.CCC.TerminationProof.<axiom_trs_Negation>"
Predication p_s ts _ ->
if null ts then (predSymName p_s) ++ " -> true"
else (predSymName p_s) ++ "(" ++ (terms_pa ts) ++ ") -> true"
Definedness t _ -> "def(" ++ (term_trs t) ++ ") -> open"
Strong_equation t1 t2 _ ->
case t2 of
Conditional tt1 ff tt2 _ ->
(term_trs t1) ++ " -> " ++ (term_trs tt1) ++ " | " ++
(axiom_sub ff) ++ " -> true\n" ++
(term_trs t1) ++ " -> " ++ (term_trs tt2) ++ " | " ++
(axiom_sub ff) ++ " -> false"
_ -> if isApp t1
then (term_trs t1) ++ " -> " ++ (term_trs t2)
else "eq(" ++ (term_trs t1) ++ "," ++ (term_trs t2) ++
") -> true"
True_atom _ -> "true -> true"
False_atom _ -> "false -> false"
_ -> error "CASL.CCC.TerminationProof.<axiom_trs>"
-- | translate a casl axiom(without conditions) to a subrule of TRS,
-- | the arrow " -> " occurs not in a subrule.
axiom_sub :: FORMULA f -> String
axiom_sub f =
case (quanti f) of
Quantification _ _ f' _ -> axiom_sub f'
Conjunction fs _ -> conj_sub fs
Disjunction fs _ -> disj_sub fs
Negation f' _ ->
case f' of
Conjunction fs _ -> "not(" ++ conj_sub fs ++ ")"
Disjunction fs _ -> "not(" ++ disj_sub fs ++ ")"
Predication p_s ts _ ->
if null ts then "not(" ++ (predSymName p_s) ++ ")"
else "not(" ++ (predSymName p_s) ++ "(" ++ (terms_pa ts) ++ "))"
Strong_equation t1 t2 _ ->
"not(eq(" ++ (term_trs t1) ++ "," ++ (term_trs t2) ++ "))"
_ -> error "CASL.CCC.TerminationProof.str_substr.<Negation>"
True_atom _ -> "true"
False_atom _ -> "false"
Predication p_s ts _ ->
if null ts then (predSymName p_s)
else (predSymName p_s) ++ "(" ++ (terms_pa ts) ++ ")"
Definedness t _ -> "def(" ++ (term_trs t) ++ ")"
Strong_equation t1 t2 _ ->
"eq(" ++ (term_trs t1) ++ "," ++ (term_trs t2) ++ ")"
_ -> error "CASL.CCC.TerminationProof.axiom_sub.<axiom_sub>"
-- | translate a list of conjunctive casl formulas to a subrule of TRS
conj_sub :: [FORMULA f] -> String
conj_sub fs =
if length fs == 2 then ("and(" ++ (axiom_sub $ head fs) ++ "," ++
(axiom_sub $ last fs) ++ ")")
else ("and(" ++ (axiom_sub $ head fs) ++ "," ++
(conj_sub $ tail fs) ++ ")")
-- | translate a list of disjunctive casl formulas to a subrule of TRS
disj_sub :: [FORMULA f] -> String
disj_sub fs =
if length fs == 2 then ("or(" ++ (axiom_sub $ head fs) ++ "," ++
(axiom_sub $ last fs) ++ ")")
else ("or(" ++ (axiom_sub $ head fs) ++ "," ++
(disj_sub $ tail fs) ++ ")")