{- |
Module : ./CASL/CCC/TerminationProof.hs
Description : termination proofs for equation systems, using AProVE
Copyright : (c) Mingyi Liu and Till Mossakowski and Uni Bremen 2004-2005
License : GPLv2 or higher, see LICENSE.txt
Maintainer : xinga@informatik.uni-bremen.de
Stability : provisional
Portability : portable
Termination proofs for equation systems, using AProVE
-}
module CASL.CCC.TerminationProof (terminationProof) where
import CASL.AS_Basic_CASL
import CASL.Quantification
import CASL.Sign
import CASL.ToDoc
import CASL.Utils
import CASL.CCC.TermFormula
import Common.DocUtils
import Common.Id
import Common.ProofUtils
import Common.Result
import Common.Utils
import Control.Monad
import System.Directory
import Data.List (intercalate, partition)
import Data.Maybe
import qualified Data.Map as Map
import qualified Data.Set as Set
{-
Automatic termination proof
using AProVE, see http://aprove.informatik.rwth-aachen.de/
interface to AProVE system, using system
translate CASL signature to AProVE Input Language,
CASL formulas to AProVE term rewrite systems(TRS),
if a equation system is terminal, then it is computable.
-}
terminationProof :: (FormExtension f, TermExtension f, Ord f) => Sign f e
-> [FORMULA f] -> [FORMULA f] -> IO (Maybe Bool, String)
terminationProof sig fs dms =
if null fs then return (Just True, "no formulas") else do
let
axhead =
[ "(RULES"
, "eq(t,t) -> true"
, "eq(_,_) -> false"
, "and(true,t) -> t"
, "and(false,t) -> false"
, "or(true,t) -> true"
, "or(false,t) -> t"
, "implies(false,t) -> true"
, "implies(true,t) -> t"
, "equiv(t,t) -> true"
, "equiv(_,_) -> false"
, "not(true) -> false"
, "not(false) -> true"
, "when_else(t1,true,t2) -> t1"
, "when_else(t1,false,t2) -> t2" ]
. map getQuantVars $ dms ++ fs
c_vars = "(VAR t t1 t2 "
++ unwords (map transToken allVars) ++ ")"
(rs, ls) = partition (isJust . maybeResult) $ map (axiom2TRS sig dms) fs
c_axms = axhead ++ map (fromJust . maybeResult) rs ++ [")"]
if null ls then do
tmpFile <- getTempFile (unlines $ c_vars : c_axms) "Input.trs"
aprovePath <- getEnvDef "HETS_APROVE" "CASL/Termination/AProVE.jar"
mr <- timeoutCommand 20 "java"
("-ea" : "-jar" : aprovePath : words "-u cli -m wst -p plain"
++ [tmpFile])
removeFile tmpFile
return $ case mr of
Nothing -> (Nothing, "timeout")
Just (_, proof, _) -> (case words proof of
"YES" : _ -> Just True
"NO" : _ -> Just False
_ -> Nothing, proof)
else return (Nothing, unlines . map diagString $ concatMap diags ls)
keywords :: [String]
keywords = ["eq", "or", "implies", "equiv", "when_else"]
-- others are CASL keywords
++ ["CONTEXTSENSITIVE", "EQUATIONS", "INNERMOST", "RULES", "STRATEGY"
, "THEORY", "VAR"]
transStringAux :: String -> String
transStringAux = concatMap (\ c -> Map.findWithDefault [c] c charMap)
transString :: String -> String
transString s = let t = transStringAux s in
if elem t keywords then '_' : t else t
transToken :: Token -> String
transToken = transString . tokStr
transId :: Id -> ShowS
transId (Id ts cs _) =
showSepList id (showString . transToken) ts .
if null cs then id else
showString "{" . showSepList (showString "-") transId cs
. showString "}"
-- | translate id to string
idStr :: Id -> String
idStr i = transId i ""
-- | get the name of a operation symbol
opSymName :: OP_SYMB -> String
opSymName = idStr . opSymbName
-- | get the name of a predicate symbol
predSymName :: PRED_SYMB -> String
predSymName = idStr . predSymbName
-- | create a predicate application
predAppl :: (Monad m, FormExtension f) => PRED_SYMB -> [TERM f] -> m String
predAppl p = liftM (predSymName p ++) . termsPA
-- | apply function string to argument string with brackets
apply :: String -> String -> String
apply f a = f ++ "(" ++ a ++ ")"
-- | create a binary application
applyBin :: String -> String -> String -> String
applyBin o t1 t2 = apply o $ t1 ++ "," ++ t2
-- | translate a casl term to a term of TRS(Terme Rewrite Systems)
term2TRS :: (Monad m, FormExtension f) => TERM f -> m String
term2TRS t = case unsortedTerm t of
Qual_var var _ _ -> return $ tokStr var
Application o ts _ -> liftM (opSymName o ++) $ termsPA ts
Conditional t1 f t2 _ -> do
b1 <- term2TRS t1
c <- axiomSub f
b2 <- term2TRS t2
return $ apply "when_else" $ b1 ++ "," ++ c ++ "," ++ b2
_ -> fail $ "no support for: " ++ showDoc t ""
-- | translate a list of casl terms to the patterns of a term in TRS
termsPA :: (Monad m, FormExtension f) => [TERM f] -> m String
termsPA ts = if null ts then return "" else
liftM (apply "" . intercalate ",") $ mapM term2TRS ts
{- | translate a casl axiom to TRS-rule:
a rule without condition is represented by "A -> B" in
Term Rewrite Systems; if there are some conditions, then
follow the conditions after the symbol "|".
For example : "A -> B | C -> D, E -> F, ..." -}
axiom2TRS :: (FormExtension f, TermExtension f, Ord f, Monad m) => Sign f e
-> [FORMULA f] -> FORMULA f -> m String
axiom2TRS sig doms f = case splitAxiom f of
(cs, f') -> do
r <- axiom2Rule f'
s <- mapM (axiom2Cond sig doms) cs
let a c = case s of
[] -> ""
_ -> c ++ intercalate ", " s
t = return $ r ++ a " | "
g = a ", "
case f' of
Equation t1 Strong t2 _ -> case unsortedTerm t2 of
Conditional tt1 ff tt2 _ -> do
e1 <- term2TRS t1
c <- axiomSub ff
b1 <- term2TRS tt1
b2 <- term2TRS tt2
return $ e1 ++ " -> " ++ b1 ++ " | "
++ c ++ " -> true" ++ g ++ "\n"
++ e1 ++ " -> " ++ b2 ++ " | "
++ c ++ " -> false" ++ g
_ -> t
_ -> t
axiom2Cond :: (FormExtension f, TermExtension f, Ord f, Monad m) => Sign f e
-> [FORMULA f] -> FORMULA f -> m String
axiom2Cond sig doms f = let s = liftM (++ " -> true") $ axiomSub f in
case f of
Definedness t _ | isApp t ->
case filter (sameOpsApp sig t . fst . fromJust . domainDef) doms of
phi : _ ->
let Result _ st = getSubstForm sig (quantFreeVars sig f nullRange) phi
in case st of
Just ((_, _), (s2, _)) ->
let Just (_, c) = domainDef phi
in axiom2Cond sig doms $ replaceVarsF s2 id c
Nothing -> s
[] -> s
_ -> s
-- | check whether it is an application term only applied to variables
isApp :: TERM t -> Bool
isApp t = case unsortedTerm t of
Application _ ts _ -> all isVar ts
_ -> False
axiom2Rule :: (Monad m, FormExtension f) => FORMULA f -> m String
axiom2Rule f = case f of
Negation f' _ -> case f' of
Quantification {} ->
fail "no support for negated quantification"
Definedness t _ -> liftM (++ " -> undefined") $ term2TRS t
_ -> liftM (++ " -> false") $ axiomSub f'
Definedness {} -> liftM (++ " -> open") $ axiomSub f
Equation t1 Strong t2 _ -> do
e1 <- term2TRS t1
e2 <- term2TRS t2
return $ e1 ++ " -> " ++ e2
Relation f1 Equivalence f2 _ -> do
f3 <- axiomSub f1
f4 <- axiomSub f2
return $ f3 ++ " -> " ++ f4
_ -> liftM (++ " -> true") $ axiomSub f
-- | translate a casl axiom (without conditions) to a term of TRS,
axiomSub :: (Monad m, FormExtension f) => FORMULA f -> m String
axiomSub f = case f of
Junction j fs@(_ : _) _ -> do
as <- mapM axiomSub fs
return $ foldr1 (applyBin $ if j == Con then "and" else "or") as
Negation f' _ -> liftM (apply "not") $ axiomSub f'
Atom b _ -> return $ if b then "true" else "false"
Predication p_s ts _ -> predAppl p_s ts
Definedness t _ -> liftM (apply "def") $ term2TRS t
Equation t1 _ t2 _ -> do -- support any equation
e1 <- term2TRS t1
e2 <- term2TRS t2
return $ applyBin "eq" e1 e2
Relation f1 c f2 _ -> do
s1 <- axiomSub f1
s2 <- axiomSub f2
return $ applyBin (if c == Equivalence then "equiv" else "implies") s1 s2
Quantification {} -> fail "no support for local quantifications"
Membership {} -> fail "no support for membership tests"
_ -> fail $ "no support for: " ++ showDoc f ""