Cross Reference: /hets/CASL/Amalgamability.hs
Amalgamability.hs revision e6d40133bc9f858308654afb1262b8b483ec5922
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
{- |
Module : $Header$
Description : Amalgamability analysis for CASL.
Copyright : (c) Maciek Makowski, Warsaw University 2004-2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : till@tzi.de
Stability : provisional
Portability : portable
Amalgamability analysis for CASL.
Follows the algorithm outlined in MFCS 2001 (LNCS 2136, pp. 451-463,
Springer 2001) paper.
-}
{-
TODO:
* generalize for CASL extensions (at least for formulas. this is easy)
* optimisations in congruenceClosure (Nelson-Oppen algorithm?)
* optimisation in colimitIsThin (fixUpdRule)
* optimisations in the whole algorithm
-}
module CASL.Amalgamability(-- * Types
CASLSign, CASLMor, CASLDiag,
-- * Functions
ensuresAmalgamability) where
import CASL.AS_Basic_CASL
import Common.Id
import Data.Graph.Inductive.Graph
import qualified Common.Lib.Graph as Tree
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Rel as Rel
import qualified Common.Lib.Set as Set
import Common.Doc
import Common.DocUtils
import Common.Result
import Common.Amalgamate
import CASL.Sign
import CASL.Morphism
import Data.List
-- Exported types
type CASLSign = Sign () ()
type CASLMor = Morphism () () ()
-- Miscellaneous types
type CASLDiag = Tree.Gr CASLSign CASLMor
type DiagSort = (Node, SORT)
type DiagOp = (Node, (Id, OpType))
type DiagPred = (Node, (Id, PredType))
type DiagEmb = (Node, SORT, SORT)
type DiagEmbWord = [DiagEmb]
-- | equivalence classes are represented as lists of elements
type EquivClass a = [a]
-- | equivalence relations are represented as lists of equivalence classes
type EquivRel a = [EquivClass a]
-- | or, sometimes, as lists of pairs (element, equiv. class tag)
type EquivRelTagged a b = [(a, b)]
-- Pretty instance (for diagnostic output)
instance (Pretty a, Pretty b) => Pretty (Tree.Gr a b) where
pretty diag =
text "nodes:"
<+> pretty (labNodes diag)
$+$ text "edges:"
<+> pretty (labEdges diag)
-- | find in Map
findInMap :: Ord k => k -> Map.Map k a -> a
findInMap k m = maybe (error "Amalgamability.findInMap") id $
Map.lookup k m
-- | Compute the Sorts set -- a disjoint union of all the sorts
-- in the diagram.
sorts :: CASLDiag -- ^ the diagram to get the sorts from
-> [DiagSort]
sorts diag =
let mkNodeSortPair n srt = (n, srt)
appendSorts sl (n, Sign { sortSet = s }) =
sl ++ (map (mkNodeSortPair n) (Set.toList s))
in foldl appendSorts [] (labNodes diag)
-- | Compute the Ops set -- a disjoint union of all the operation symbols
-- in the diagram.
ops :: CASLDiag -- ^ the diagram to get the ops from
-> [DiagOp]
ops diag =
let mkNodeOp n opId opType ol = ol ++ [(n, (opId, opType))]
mkNodeOps n opId opTypes ol =
ol ++ Set.fold (mkNodeOp n opId) [] opTypes
appendOps ol (n, Sign { opMap = m }) =
ol ++ Map.foldWithKey (mkNodeOps n) [] m
in foldl appendOps [] (labNodes diag)
-- | Compute the Preds set -- a disjoint union of all the predicate symbols
-- in the diagram.
preds :: CASLDiag -- ^ the diagram to get the preds from
-> [DiagPred]
preds diag =
let mkNodePred n predId predType pl = pl ++ [(n, (predId, predType))]
mkNodePreds n predId predTypes pl =
pl ++ Set.fold (mkNodePred n predId) [] predTypes
appendPreds pl (n, Sign { predMap = m }) =
pl ++ Map.foldWithKey (mkNodePreds n) [] m
in foldl appendPreds [] (labNodes diag)
-- | Convert the relation representation from list of pairs
-- (val, equiv. class tag) to a list of equivalence classes.
taggedValsToEquivClasses :: Ord b
=> EquivRelTagged a b -- ^ a list of (value,tag) pairs
-> EquivRel a
taggedValsToEquivClasses [] = []
taggedValsToEquivClasses rel' =
let -- prepMap: create a map with all the equivalence class tags mapped to
-- empty lists
prepMap rel =
foldl (\m -> \k -> Map.insert (snd k) [] m) Map.empty rel
-- conv: perform actual conversion
convert [] m = map snd (Map.toList m)
convert ((ds, ect) : dsps) m =
let m' = Map.update (\ec -> Just (ds : ec)) ect m
in convert dsps m'
in convert rel' (prepMap rel')
-- | Convert the relation representation from list of
-- equivalence classes to list of (value, tag) pairs.
equivClassesToTaggedVals :: Ord a
=> EquivRel a
-> EquivRelTagged a a
equivClassesToTaggedVals rel =
let eqClToList [] = []
eqClToList eqcl@(ft : _) = map (\x -> (x, ft)) eqcl
in foldl (\vtl -> \eqcl -> vtl ++ (eqClToList eqcl)) [] rel
{- the old, n^3 version of mergeEquivClassesBy:
-- | Merge the equivalence classes for elements fulfilling given condition.
mergeEquivClassesBy :: Eq b
=> (a -> a -> Bool)
-- ^ the condition stating when two elements are in relation
-> EquivRelTagged a b -- ^ the input relation
-> EquivRelTagged a b
-- ^ returns the input relation with equivalence classes merged according to
-- the condition.
mergeEquivClassesBy cond rel =
-- Starting with the first element in the list an element (elem, tag) is taken
-- and cond is subsequently applied to it and all the elements
-- following it in the list. Whenever an element (elem', tag')
-- that is in relation with the chosen one is found, all the equivalence
-- class tags in the list that are equal to tag' are updated to tag.
let merge rel pos | pos >= length rel = rel
merge rel pos | otherwise =
let mergeWith cmpl _ [] = cmpl
mergeWith cmpl vtp@(elem, ec) toCmpl@((elem', ec') : _) =
let (cmpl', toCmpl') = if ec /= ec' && (cond elem elem')
then let upd (elem'', ec'') =
if ec'' == ec'
then (elem'', ec)
else (elem'', ec'')
in (map upd cmpl,
map upd toCmpl)
else (cmpl, toCmpl)
in mergeWith (cmpl' ++ [head toCmpl']) vtp (tail toCmpl')
(cmpl, (vtp : vtps)) = splitAt pos rel
rel' = mergeWith (cmpl ++ [vtp]) vtp vtps
in merge rel' (pos + 1)
in merge rel 0
-}
data TagEqcl a b = Eqcl [a] | TagRef b
deriving Show
-- | Merge the equivalence classes for elements fulfilling given condition.
mergeEquivClassesBy :: (Ord b)
=> (a -> a -> Bool)
-- ^ the condition stating when two elements are in relation
-> EquivRelTagged a b -- ^ the input relation
-> EquivRelTagged a b
-- ^ returns the input relation with equivalence classes merged according to
-- the condition.
mergeEquivClassesBy cond rel =
{- Starting with the first element in the list an element (elem,
tag) is taken and cond is subsequently applied to it and all the
elements following it in the list. Whenever an element (elem',
tag') that is in relation with the chosen one is found, the
equivalence classes in tagMap for tag and tag' are merged: tag in
tagMap points to the merged equivalence class and tag' in tagMap
is a reference to tag. -}
let -- create the initial map mapping tags to equivalence classes
initialTagMap =
let insEl tagMap (val, tag) =
case Map.member tag tagMap of
True -> Map.update (\(Eqcl eqcl) ->
Just (Eqcl (val : eqcl))) tag tagMap
False -> Map.insert tag (Eqcl [val]) tagMap
in foldl insEl Map.empty rel
-- merge equivalence classes tagged with t1 and t2
mergeInMap inTagMap t1 t2 =
let {- find the tag and equivalence class that corresponds
to the given tag performing path compression while
traversing the referneces. -}
findEqcl t tagMap =
case findInMap t tagMap of
Eqcl eqcl -> (t, eqcl, tagMap)
TagRef t' -> let
(rt, eqcl, tagMap') = findEqcl t' tagMap
tagMap'' = if rt == t' then tagMap' else
Map.update (\_ -> Just (TagRef rt)) t tagMap'
in (rt, eqcl, tagMap'')
(rt1, eqcl1, tagMap1) = findEqcl t1 inTagMap
(rt2, eqcl2, tagMap2) = findEqcl t2 tagMap1
in if rt1 == rt2 then tagMap2
else let (nrt1, nrt2) = if rt1 > rt2 then (rt2, rt1)
else (rt1, rt2)
tagMap3 = Map.update
(\_ -> Just (Eqcl (eqcl1 ++ eqcl2))) nrt1 tagMap2
tagMap4 = Map.update
(\_ -> Just (TagRef nrt1)) nrt2 tagMap3
in tagMap4
{- iterate through the relation merging equivalence classes of
appropriate elements -}
merge tagMap' rel' pos | pos >= length rel' = tagMap'
merge tagMap' rel' pos | otherwise =
let mergeWith tagMap _ [] = tagMap
mergeWith tagMap vtp@(elem1, ec) toCmpl@((elem2, ec') : _) =
let tagMap1 = if ec /= ec' && (cond elem1 elem2)
then mergeInMap tagMap ec ec'
else tagMap
in mergeWith tagMap1 vtp (tail toCmpl)
(_, (vtp' : vtps)) = splitAt pos rel'
tagMap'' = mergeWith tagMap' vtp' vtps
in merge tagMap'' rel' (pos + 1)
-- append given equivalence class to the list of (value, tag) pairs
tagMapToRel rel' (_, TagRef _) = rel'
tagMapToRel rel' (tag, Eqcl eqcl) =
foldl (\l -> \v -> (v, tag) : l) rel' eqcl
myTagMap = merge initialTagMap rel 0
in foldl tagMapToRel [] (Map.toList myTagMap)
-- | Merge the equivalence classes for given tags.
mergeEquivClasses :: Eq b
=> EquivRelTagged a b
-> b -- ^ tag 1
-> b -- ^ tag 2
-> EquivRelTagged a b
mergeEquivClasses rel tag1 tag2 | tag1 == tag2 = rel
| otherwise =
let upd (el, tag) | tag == tag2 = (el, tag1)
| otherwise = (el, tag)
in map upd rel
-- | Return true if there is an edge between srcNode and targetNode
-- and the morphism with which it's labelled maps srcSort to targetSort
isMorphSort :: CASLDiag
-> DiagSort
-> DiagSort
-> Bool
isMorphSort diag (srcNode, srcSort) (targetNode, targetSort) =
let checkEdges [] = False
checkEdges ((sn, tn, Morphism { sort_map = sm }) : edgs) =
if sn == srcNode &&
tn == targetNode &&
mapSort sm srcSort == targetSort
then True else checkEdges edgs
in checkEdges (out diag srcNode)
-- | Return true if there is an edge between srcNode and targetNode
-- and the morphism with which it's labelled maps srcOp to targetOp
isMorphOp :: CASLDiag
-> DiagOp
-> DiagOp
-> Bool
isMorphOp diag (srcNode, srcOp) (targetNode, targetOp) =
let checkEdges [] = False
checkEdges ((sn, tn, Morphism { sort_map=sm, fun_map=fm }) : edgs) =
if sn == srcNode &&
tn == targetNode &&
mapOpSym sm fm srcOp == targetOp
then True else checkEdges edgs
in checkEdges (out diag srcNode)
-- | Return true if there is an edge between srcNode and targetNode
-- and the morphism with which it's labelled maps srcPred to targetPred
isMorphPred :: CASLDiag
-> DiagPred
-> DiagPred
-> Bool
isMorphPred diag (srcNode, srcPred) (targetNode, targetPred) =
let checkEdges [] = False
checkEdges ((sn, tn, Morphism { sort_map=sm, pred_map=pm }) : edgs) =
if sn == srcNode &&
tn == targetNode &&
mapPredSym sm pm srcPred == targetPred
then True else checkEdges edgs
in checkEdges (out diag srcNode)
-- | Compute the simeq relation for given diagram.
simeq :: CASLDiag -- ^ the diagram for which the relation should be created
-> EquivRel DiagSort
-- ^ returns the relation represented as a list of equivalence
-- classes (each represented as a list of diagram ops)
simeq diag =
-- During the computations the relation is represented as a list of pairs
-- (DiagSort, DiagSort). The first element is a diagram sort and the second
-- denotes the equivalence class to which it belongs. All the pairs with
-- equal second element denote elements of one equivalence class.
let mergeCond ds ds' = isMorphSort diag ds ds' || isMorphSort diag ds' ds
-- compute the relation
rel = map (\ds -> (ds, ds)) (sorts diag)
rel' = mergeEquivClassesBy mergeCond rel
in taggedValsToEquivClasses rel'
-- | Compute the simeq^op relation for given diagram.
simeqOp :: CASLDiag -- ^ the diagram for which the relation should be created
-> EquivRel DiagOp
-- ^ returns the relation represented as a list of equivalence
-- classes (each represented as a list of diagram ops)
simeqOp diag =
-- During the computations the relation is represented as a list of pairs
-- (DiagOp, DiagOp). The first element is a diagram op and the second
-- denotes the equivalence class to which it belongs. All the pairs with
-- equal second element denote elements of one equivalence class.
let mergeCond ds ds' = isMorphOp diag ds ds' || isMorphOp diag ds' ds
-- compute the relation
rel = map (\ds -> (ds, ds)) (ops diag)
rel' = mergeEquivClassesBy mergeCond rel
in taggedValsToEquivClasses rel'
-- | Compute the simeq^pred relation for given diagram.
simeqPred :: CASLDiag
-- ^ the diagram for which the relation should be created
-> EquivRel DiagPred
-- ^ returns the relation represented as a list of equivalence
-- classes (each represented as a list of diagram preds)
simeqPred diag =
-- During the computations the relation is represented as a list of pairs
-- (DiagPred, DiagPred). The first element is a diagram pred and the second
-- denotes the equivalence class to which it belongs. All the pairs with
-- equal second element denote elements of one equivalence class.
let mergeCond ds ds' = isMorphPred diag ds ds' || isMorphPred diag ds' ds
-- compute the relation
rel = map (\ds -> (ds, ds)) (preds diag)
rel' = mergeEquivClassesBy mergeCond rel
in taggedValsToEquivClasses rel'
-- | Compute the simeq_tau relation for given diagram.
simeq_tau :: [(Node, CASLMor)]
-> EquivRel DiagSort
simeq_tau sink =
let -- tagEdge: for given morphism m create a list of pairs
-- (a, b) where a is DiagSort from the source signature that
-- is mapped by m to b
tagEdge (sn, Morphism { msource = src, sort_map = sm }) =
map (\ ss -> ((sn, ss), mapSort sm ss))
(Set.toList $ sortSet src)
rel = foldl (\l -> \e -> l ++ (tagEdge e)) [] sink
in taggedValsToEquivClasses rel
-- | Compute the simeq^op_tau relation for given diagram.
simeqOp_tau :: [(Node, CASLMor)]
-> EquivRel DiagOp
simeqOp_tau sink =
let -- tagEdge: for given morphism m create a list of pairs
-- (a, b) where a is DiagOp from the source signature that
-- is mapped by m to b
tagEdge (sn, Morphism { msource=src, sort_map = sm, fun_map = fm }) =
map (\srcOp -> ((sn, srcOp), mapOpSym sm fm srcOp))
(concatMap ( \ (i, s) ->
map ( \ ot -> (i, ot)) $ Set.toList s)
$ Map.toList $ opMap src)
rel = foldl (\l -> \e -> l ++ (tagEdge e)) [] sink
in taggedValsToEquivClasses rel
-- | Compute the simeq^pred_tau relation for given diagram.
simeqPred_tau :: [(Node, CASLMor)]
-> EquivRel DiagPred
simeqPred_tau sink =
let -- tagEdge: for given morphism m create a list of pairs
-- (a, b) where a is DiagPred from the source signature that
-- is mapped by m to b
tagEdge (sn, Morphism { msource=src, sort_map = sm, pred_map = pm }) =
map (\srcPred -> ((sn, srcPred), mapPredSym sm pm srcPred))
(concatMap ( \ (i, s) ->
map ( \ pt -> (i, pt)) $ Set.toList s)
$ Map.toList $ predMap src)
rel = foldl (\l -> \e -> l ++ (tagEdge e)) [] sink
in taggedValsToEquivClasses rel
-- | Check that one equivalence relation is a subset of another.
-- The relations are represented as a lists of equivalence classes,
-- where equivalence classes are lists of elements.
subRelation :: Eq a
=> EquivRel a -- ^ the relation that is supposed to be a subset
-> EquivRel a -- ^ the relation that is supposed to be a superset
-> Maybe (a, a)
-- ^ returns a pair of elements that are in the same equivalence class of the
-- first relation but are not in the same equivalence class of the second
-- relation or Nothing the first relation is a subset of the second one.
subRelation [] _ = Nothing
subRelation ([] : eqcls) sup = subRelation eqcls sup
-- this should never be the case
subRelation (elts'@(elt' : _) : eqcls') sup =
let findEqCl _ [] = []
findEqCl elt (eqcl : eqcls) =
if elem elt eqcl then eqcl else findEqCl elt eqcls
checkEqCl [] _ = Nothing
checkEqCl (elt : elts) supEqCl =
if elem elt supEqCl
then checkEqCl elts supEqCl
else Just elt
curFail = checkEqCl elts' (findEqCl elt' sup)
in case curFail of
Nothing -> subRelation eqcls' sup
Just elt2 -> Just (elt', elt2)
-- | Compute the set of sort embeddings defined in the diagram.
embs :: CASLDiag
-> [DiagEmb]
embs diag =
let embs' [] = []
embs' ((n, Sign {sortRel = sr}) : lNodes) =
(map (\(s1, s2) -> (n, s1, s2)) (Rel.toList sr)) ++ (embs' lNodes)
in embs' (labNodes diag)
-- | Compute the set of sort embeddings (relations on sorts) defined
-- in the source nodes of the sink.
sinkEmbs :: CASLDiag -- ^ the diagram
-> [(Node, CASLMor)] -- ^ the sink
-> [DiagEmb]
sinkEmbs _ [] = []
sinkEmbs diag ((srcNode, _) : edgs) =
let (_, _, Sign {sortRel = sr}, _) = context diag srcNode
in (map (\(s1, s2) -> (srcNode, s1, s2)) (Rel.toList sr))
++ (sinkEmbs diag edgs)
-- | Check if the two given elements are in the given relation.
inRel :: Eq a
=> EquivRel a -- ^ the relation
-> a -- ^ the first element
-> a -- ^ the second element
-> Bool
inRel [] _ _ = False
inRel (eqc : eqcs) a b | a == b = True
| otherwise =
case find (\x -> x == a) eqc of
Nothing -> inRel eqcs a b
Just _ -> case find (\x -> x == b) eqc of
Nothing -> False
Just _ -> True
-- | Check if two embeddings can occur subsequently in a word
-- given the simeq relation on sorts.
admissible :: EquivRel DiagSort -- ^ the \simeq relation
-> DiagEmb -- ^ the first embedding
-> DiagEmb -- ^ the second embedding
-> Bool
admissible simeq' (n1, s1, _) (n2, _, s2) =
inRel simeq' (n1, s1) (n2, s2)
-- | Compute the set of all the loopless, admissible
-- words over given set of embeddings.
looplessWords :: [DiagEmb] -- ^ the embeddings
-> EquivRel DiagSort
-- ^ the \simeq relation that defines admissibility
-> [DiagEmbWord]
looplessWords embs1 simeq1 =
let -- generate the list of all loopless words over given alphabet
-- with given suffix
looplessWords' suff@(e : _) embs2 pos | pos >= length embs2 = [suff]
| otherwise =
let emb = embs2 !! pos
embs' = embs2 \\ [emb]
ws = if admissible simeq1 emb e
then looplessWords' (emb : suff) embs' 0
else []
in ws ++ (looplessWords' suff embs2 (pos + 1))
looplessWords' [] embs2 pos | pos >= length embs2 = []
| otherwise =
let emb = embs2 !! pos
embs' = embs2 \\ [emb]
in looplessWords' [emb] embs' 0 ++
looplessWords' [] embs2 (pos + 1)
in looplessWords' [] embs1 0
-- | Return the codomain of an embedding path.
wordCod :: DiagEmbWord
-> DiagSort
wordCod ((n, _, s2) : _) = (n, s2)
wordCod [] = error "wordCod"
-- | Return the domain of an embedding path.
wordDom :: DiagEmbWord
-> DiagSort
wordDom [] = error "wordDom"
wordDom w = let (n, s1, _) = last w in (n, s1)
-- | Find an equivalence class tag for given element.
findTag :: Eq a
=> EquivRelTagged a b
-> a
-> Maybe b
findTag [] _ = Nothing
findTag ((w', t) : wtps) w =
if w == w' then Just t else findTag wtps w
-- | Compute the left-cancellable closure of a relation on words.
leftCancellableClosure :: EquivRelTagged DiagEmbWord DiagEmbWord
-> EquivRelTagged DiagEmbWord DiagEmbWord
leftCancellableClosure rel1 =
let -- checkPrefixes: for each common prefix of two given words
-- merge the equivalence classes of the suffixes
checkPrefixes [] _ rel = rel
checkPrefixes _ [] rel = rel
checkPrefixes w1@(l1 : suf1) w2@(l2 : suf2) rel | w1 == w2 = rel
| l1 /= l2 = rel
| otherwise =
let tag1 = maybe (error "checkPrefixes: tag1") id
$ findTag rel suf1
tag2 = maybe (error "checkPrefixes: tag2") id
$ findTag rel suf2
rel' = if tag1 == tag2 then rel
else let upd (w, t) | t == tag2 = (w, tag1)
| otherwise = (w, t)
in map upd rel
in checkPrefixes suf1 suf2 rel'
-- iterateWord1: for each pair of related words call checkPrefixes
iterateWord1 rel pos | pos >= length rel = rel
| otherwise =
let iterateWord2 wtp1@(w1, t1) rel2 pos2
| pos2 >= length rel2 = rel2
| otherwise =
let _wtp2@(w2, t2) = rel2 !! pos2
rel3 = if t1 == t2 then checkPrefixes w1 w2 rel2
else rel2
in iterateWord2 wtp1 rel3 (pos2 + 1)
wtp = rel !! pos
rel' = iterateWord2 wtp rel 0
in iterateWord1 rel' (pos + 1)
in {-trace ("leftCancellableClosure " ++ show rel) $-} iterateWord1 rel1 0
{- | Compute the congruence closure of an equivalence R: two pairs of
elements (1, 3) and (2, 4) are chosen such that 1 R 2 and 3 R 4. It is
then checked that elements 1, 3 and 2, 4 are in relation supplied and
if so equivalence classes for (op 1 3) and (op 1 4) in R are merged.
This function should be applied to the relation until a fixpoint is
reached. -}
congruenceClosure :: (Eq a, Eq b)
=> (a -> a -> Bool)
-- ^ the check to be performed on elements 1, 3 and 2, 4
-> (a -> a -> a)
-- ^ the operation to be performed on elements 1, 3 and 2, 4
-> EquivRelTagged a b
-> EquivRelTagged a b
congruenceClosure check op rel =
let -- iterateWord1
iterateWord1 rel1 pos1 | pos1 >= length rel1 = rel1
| otherwise = let -- iterateWord2
iterateWord2 wtp1@(_, t1) rel2 pos2 | pos2 >= length rel2 = rel2
| otherwise = let -- iterateWord3
iterateWord3 wtp1'@(w1', _) wtp2' rel3 pos3
| pos3 >= length rel3 = rel3
| otherwise = let -- iterateWord4
iterateWord4 wtp1''@(w1, _) wtp2''@(w2, _) wtp3'@(w3, t3) rel4 pos4
| pos4 >= length rel4 = rel4
| otherwise = let
(w4, t4) = rel4 !! pos4
rel4' = if t3 /= t4 || not (check w2 w4) then rel4 else let
mct1 = findTag rel (op w1 w3)
mct2 = findTag rel (op w2 w4)
in case (mct1, mct2) of
(Nothing, _) -> rel4 -- w3w1 is not in the domain of rel
(_, Nothing) -> rel4 -- w4w2 is not in the domain of rel
(Just ct1, Just ct2) -> mergeEquivClasses rel4 ct1 ct2
in iterateWord4 wtp1'' wtp2'' wtp3' rel4' (pos4 + 1)
wtp3@(w3', _) = rel3 !! pos3
rel3' = if check w1' w3' --inRel here is usually much more efficient
-- than findTag rel (w3 ++ w1)
then iterateWord4 wtp1' wtp2' wtp3 rel3 0 else rel3
in iterateWord3 wtp1' wtp2 rel3' (pos3 + 1)
wtp2@(_, t2) = rel2 !! pos2
rel2' = if t1 /= t2 then rel2 else iterateWord3 wtp1 wtp2 rel2 0
in iterateWord2 wtp1 rel2' (pos2 + 1)
wtp = rel1 !! pos1
rel' = iterateWord2 wtp rel1 0
in iterateWord1 rel' (pos1 + 1)
in{- trace ("congruenceClosure " ++ show rel) $-} iterateWord1 rel 0
-- | Compute the cong_tau relation for given diagram and sink.
cong_tau :: CASLDiag -- ^ the diagram
-> [(Node, CASLMor)] -- ^ the sink
-> EquivRel DiagSort -- ^ the \simeq_tau relation
-> EquivRel DiagEmbWord
cong_tau diag sink st =
-- domCodSimeq: check that domains and codomains of given words are related
let domCodSimeq w1 w2 = inRel st (wordDom w1) (wordDom w2)
&& inRel st (wordCod w1) (wordCod w2)
embs1 = sinkEmbs diag sink
words1 = looplessWords embs1 st
rel = map (\w -> (w, w)) words1
rel' = mergeEquivClassesBy domCodSimeq rel
in taggedValsToEquivClasses rel'
-- | Compute the finite representation of cong_0 relation for given diagram.
-- The representation consists only of equivalence classes that
-- contain more than one element.
cong_0 :: CASLDiag
-> EquivRel DiagSort -- ^ the \simeq relation
-> EquivRel DiagEmbWord
cong_0 diag simeq' =
let -- diagRule: the Diag rule
diagRule [(n1, s11, s12)] [(n2, s21, s22)] =
isMorphSort diag (n1, s11) (n2, s21)
&& isMorphSort diag (n1, s12) (n2, s22)
|| isMorphSort diag (n2, s21) (n1, s11)
&& isMorphSort diag (n2, s22) (n1, s12)
diagRule _ _ = False
-- addToRel: add given word to given relation
addToRel [] _ = []
addToRel ([] : _) _ = error "addToRel"
addToRel (eqcl@(refw : _) : eqcls) w =
if wordDom w == wordDom refw && wordCod w == wordCod refw
then ((w : eqcl) : eqcls)
else (eqcl : (addToRel eqcls w))
-- words2: generate all the admissible 2-letter words over given alphabet
words2 _ [] _ = []
words2 alph (_ : embs1) [] = words2 alph embs1 alph
words2 alph embs1@(emb1 : _) (emb2 : embs2) =
let ws = words2 alph embs1 embs2
in if admissible simeq' emb1 emb2
then ([emb1, emb2] : ws) else ws
-- compute the relation
em = embs diag
rel = map (\e -> ([e], [e])) em
rel' = mergeEquivClassesBy diagRule rel
rel'' = taggedValsToEquivClasses rel'
w2s = words2 em em em
rel''' = foldl addToRel rel'' w2s
in rel'''
-- | Compute the set Adm_\simeq if it's finite.
finiteAdm_simeq :: [DiagEmb] -- ^ the embeddings
-> EquivRel DiagSort
-- ^ the \simeq relation that defines admissibility
-> Maybe [DiagEmbWord]
-- ^ returns the computed set or Nothing if it's infinite
finiteAdm_simeq embs' simeq' =
let -- generate the list of the words over given alphabet
-- with given suffix
embWords' suff@(e : _) embs1 pos | pos >= length embs1 = Just [suff]
| otherwise =
let emb = embs1 !! pos
mws1 = if admissible simeq' emb e
then if any (\emb' -> emb' == emb) suff
then Nothing
else embWords' (emb : suff) embs1 0
else Just []
mws2 = case mws1 of
Nothing -> Nothing
Just _ -> embWords' suff embs1 (pos + 1)
in case mws1 of
Nothing -> Nothing
Just ws1 -> case mws2 of
Nothing -> Nothing
Just ws2 -> Just (ws1 ++ ws2)
embWords' [] embs1 pos | pos >= length embs1 = Just []
embWords' [] embs1 pos | otherwise =
let emb = embs1 !! pos
mws1 = embWords' [emb] embs1 0
mws2 = case mws1 of
Nothing -> Nothing
Just _ -> embWords' [] embs1 (pos + 1)
in case mws1 of
Nothing -> Nothing
Just ws1 -> case mws2 of
Nothing -> Nothing
Just ws2 -> Just (ws1 ++ ws2)
in embWords' [] embs' 0
-- | Check if the colimit is thin.
colimitIsThin :: EquivRel DiagSort -- ^ the simeq relation
-> [DiagEmb] -- ^ the set of diagram embeddings
-> EquivRel DiagEmbWord -- ^ the cong_0 relation
-> Bool
colimitIsThin simeq' embs' c0 =
let -- sortsC: a list of colimit sorts
sortsC = foldl (\ls -> \eqcl -> (head eqcl : ls)) [] simeq'
simeqT = equivClassesToTaggedVals simeq'
-- ordMap: map representing the topological order on sorts in the colimit
ordMap =
let sortClasses' m [] = m
sortClasses' m ((n, s1, s2) : embs1) =
let c1 = maybe (error "sortClasses:s1") id
$ findTag simeqT (n, s1)
c2 = maybe (error "sortClasses:s2") id
$ findTag simeqT (n, s2)
in sortClasses' (Map.update (\se -> Just
(Set.insert c2 se)) c1 m) embs1
ordMap' = foldl (\m -> \cl -> Map.insert cl Set.empty m)
Map.empty sortsC
in sortClasses' ordMap' embs'
-- larger: return a list of colimit sorts larger than given sort
larger srt =
let dl = Set.toList (findInMap srt ordMap)
in (srt : (foldl (\l -> \so -> l ++ (larger so)) [] dl))
-- s: the map representing sets S_{\geq s1,s2}
s = let compS m (s1, s2) =
let ls1 = Set.fromList (larger s1)
ls2 = Set.fromList (larger s2)
in Map.insert (s1, s2) (Set.intersection ls1 ls2) m
in foldl compS Map.empty [(s1, s2) | s1 <- sortsC, s2 <- sortsC]
-- b: the map representing sets B_{s1,s2}
b = let compB m sp =
let sim' s' s'' = not (Set.null (findInMap (s', s'') s))
rel = map (\x -> (x, x)) (Set.toList (findInMap sp s))
rel' = mergeEquivClassesBy sim' rel
in Map.insert sp (taggedValsToEquivClasses rel') m
in foldl compB Map.empty [(s1, s2) | s1 <- sortsC, s2 <- sortsC]
embDomS (n, dom, _) = maybe (error "embDomS") id
$ findTag simeqT (n, dom)
embCodS (n, _, cod) = maybe (error "embCodS") id
$ findTag simeqT (n, cod)
-- checkAllSorts: check the C = B condition for all colimit sorts
checkAllSorts m | Map.null m = {-trace "CT: Yes"-} True
| otherwise =
let -- checkSort: check if for given colimit sort C = B
checkSort chs = let
embsCs = filter (\e -> embDomS e == chs) embs'
c = foldl (\ma -> \ep -> Map.insert ep [] ma) Map.empty
[(d, e) | d <- embsCs, e <- embsCs]
c' = let
updC c1 (d, e) = let
s1 = embCodS d
s2 = embCodS e
in Map.update (\_ -> Just (findInMap (s1, s2) b)) (d, e) c1
in foldl updC c
[(d, e) | d <- embsCs, e <- embsCs, inRel c0 [d] [e]]
c'' = let
updC c1 (d@(n1, _, cod1), e@(n2, _, cod2)) = let
s1 = embCodS d
s2 = embCodS e
in if filter (\(n, dom, cod) -> (n, dom) == (n1, cod1)
&& (n, cod) == (n2, cod2)) embs' == []
then c else let
[absCls] = filter (\ac -> any (s2==) ac)
(findInMap (s1, s2) b)
in foldl (\c2 k -> Map.update (\l -> Just
(l ++ [absCls])) k c2) c1 [(d, e), (e, d)]
in foldl updC c' [(d, e) | d <- embsCs,
e <- embsCs, wordDom [d] == wordDom [e]]
fixUpdRule cFix = let
updC c1 (e1, e2, e3) = let
updC' c2 (b12, b23, b13) = let
sb12 = Set.fromList b12
sb23 = Set.fromList b23
sb13 = Set.fromList b13
comm = Set.intersection sb12 (Set.intersection sb23 sb13)
in if Set.null comm then c2 else let
c2' = if any (\l -> l == b13) (findInMap (e1, e3) c2)
then c2
else Map.update (\l -> Just (l ++ [b13])) (e1, e3) c2
in if any (\l -> l == b13) (findInMap (e1, e3) c2')
then c2'
else Map.update (\l -> Just (l ++ [b13])) (e3, e1) c2'
s1 = embCodS e1
s3 = embCodS e3
in foldl updC' c1 [(b12, b23, b13) |
b12 <- (findInMap (e1, e2) c1),
b23 <- (findInMap (e2, e3) c1),
b13 <- (findInMap (s1, s3) b)]
cFix' = foldl updC cFix [(e1, e2, e3) |
e1 <- embsCs, e2 <- embsCs, e3 <- embsCs]
in if cFix' == cFix then cFix else fixUpdRule cFix'
c3 = fixUpdRule c''
checkIncl [] = True
checkIncl ((e1, e2) : embprs) = let
s1 = embCodS e1
s2 = embCodS e2
res = if subRelation (findInMap (s1, s2) b)
(findInMap (e1, e2) c3) == Nothing then checkIncl embprs
else False
in {- trace ("B[" ++ (show s1) ++ ", " ++ (show s2) ++ ":\n"
++ (show (findInMap (s1, s2) b))
++ "\n" ++ "C[" ++ (show e1) ++
", " ++ (show e2) ++ ":\n" ++
(show (findInMap (e1, e2) c3)) ++
"\n\n") -} res
in checkIncl [(e1, e2) | e1 <- embsCs, e2 <- embsCs]
-- cs: next colimit sort to process
-- m1: the order map with cs removed
(cs, m1) = let
[(cs', _)] = take 1 (filter (\(_, lt) -> Set.null lt)
(Map.toList m))
m' = Map.delete cs' m
m'' = foldl (\ma -> \k -> Map.update (\lt -> Just
(Set.delete cs lt)) k ma)
m' (Map.keys m')
in (cs', m'')
in if checkSort cs then checkAllSorts m1
else {-trace "CT: No"-} False
in {-trace ("\\simeq: " ++ (show simeq) ++ "\nEmbs: " ++ (show
embs) ++ "\n\\cong_0: " ++ show c0)-} checkAllSorts ordMap
{- the old, unoptimised version of cong:
-- | Compute the \cong relation given its (finite) domain
cong :: CASLDiag
-> [DiagEmbWord] -- ^ the Adm_\simeq set (the domain of \cong relation)
-> EquivRel DiagSort -- ^ the \simeq relation
-> EquivRel DiagEmbWord
cong diag adm simeq =
-- domCodEqual: check that domains and codomains of given words are equal
let domCodEqual w1 w2 =
wordDom w1 == wordDom w2 && wordCod w1 == wordCod w2
-- diagRule: the Diag rule
diagRule [(n1, s11, s12)] [(n2, s21, s22)] =
isMorphSort diag (n1, s11) (n2, s21) && isMorphSort diag (n1, s12)
(n2, s22) ||
isMorphSort diag (n2, s21) (n1, s11) && isMorphSort diag (n2, s22)
(n1, s12)
diagRule _ _ = False
-- compRule: the Comp rule works for words 1 and 2-letter long
-- with equal domains and codomains
compRule w1@[_] w2@[_, _] = domCodEqual w1 w2
compRule w1@[_, _] w2@[_] = domCodEqual w1 w2
compRule _ _ = False
-- fixCongLc: apply Cong and Lc rules until a fixpoint is reached
fixCongLc rel =
let rel' = (leftCancellableClosure . congruenceClosure simeq) rel
in if rel == rel' then rel else fixCongLc rel'
-- compute the relation
rel = map (\w -> (w, w)) adm
rel' = mergeEquivClassesBy diagRule rel
rel'' = mergeEquivClassesBy compRule rel'
rel''' = fixCongLc rel''
in taggedValsToEquivClasses rel'''
-}
{- | Compute the (optimised) \cong relation given its (finite) domain
and \sim relation. Optimised \cong is supposed to contain only words
composed of canonical embeddings; we also use a (CompDiag) rule
instead of (Comp) and (Diag) rules. -}
cong :: CASLDiag
-> [DiagEmbWord] -- ^ the Adm_\simeq set (the domain of \cong relation)
-> EquivRel DiagSort -- ^ the \simeq relation
-> EquivRel DiagEmb -- ^ the \sim relation
-> EquivRel DiagEmbWord
cong diag adm simeq' sim' =
-- domCodEqual: check that domains and codomains of given words are equal
let _domCodEqual w1 w2 =
wordDom w1 == wordDom w2 && wordCod w1 == wordCod w2
-- diagRule: the Diag rule
_diagRule [(n1, s11, s12)] [(n2, s21, s22)] =
isMorphSort diag (n1, s11) (n2, s21)
&& isMorphSort diag (n1, s12) (n2, s22)
|| isMorphSort diag (n2, s21) (n1, s11)
&& isMorphSort diag (n2, s22) (n1, s12)
_diagRule _ _ = False
-- compDiagRule: the combination of Comp and Diag rules
compDiagRule w1@[_] w2@[_, _] = compDiagRule w2 w1
compDiagRule [e1, e2] [d] =
let [ec1] = filter (\(e : _) -> e == e1) sim'
[ec2] = filter (\(e : _) -> e == e2) sim'
matches' [] = False
matches' (((n1, _, s12), (n2, s21, _)) : eps) =
if n1 == n2 && inRel sim' d (n1, s21, s12)
then True
else matches' eps
in matches' [(me1, me2) | me1 <- ec1, me2 <- ec2]
compDiagRule _ _ = False
-- fixCongLc: apply Cong and Lc rules until a fixpoint is reached
fixCongLc rel1 =
let rel2 = (leftCancellableClosure .
congruenceClosure (\w1 -> \w2 ->
inRel simeq' (wordCod w1) (wordDom w2))
(\w1 -> \w2 -> w2 ++ w1)) rel1
in if rel1 == rel2 then rel1 else fixCongLc rel2
-- compute the relation
rel = map (\w -> (w, w)) adm
rel' = mergeEquivClassesBy compDiagRule rel
rel'' = fixCongLc rel'
in taggedValsToEquivClasses rel''
-- | Compute the \cong^R relation
congR :: CASLDiag
-> EquivRel DiagSort -- ^ the \simeq relation
-> EquivRel DiagEmb -- ^ the \sim relation
-> EquivRel DiagEmbWord
congR diag simeq' sim' =
--cong diag (looplessWords (embs diag) simeq) simeq
cong diag (looplessWords (canonicalEmbs sim') simeq') simeq' sim'
-- | Compute the \sim relation
sim :: CASLDiag
-> [DiagEmb]
-> EquivRel DiagEmb
sim diag embs' =
let -- diagRule: the Diag rule
diagRule (n1, s11, s12) (n2, s21, s22) =
isMorphSort diag (n1, s11) (n2, s21)
&& isMorphSort diag (n1, s12) (n2, s22)
|| isMorphSort diag (n2, s21) (n1, s11)
&& isMorphSort diag (n2, s22) (n1, s12)
-- the check for congruenceClosure
check (p, s11, s12) (q, s21, s22) =
if p /= q || s12 /= s21 then False
else any (\(n, s1, s2) -> n == p && s1 == s11 && s2 == s22) embs'
-- the op for congruence closure
op (p, s1, _) (_, _, s2) = (p, s1, s2)
-- fixCong: apply Cong rule until a fixpoint is reached
fixCong rel1 =
let rel2 = congruenceClosure check op rel1
in if rel1 == rel2 then rel1 else fixCong rel2
rel = map (\e -> (e, e)) embs'
rel' = fixCong rel
rel'' = mergeEquivClassesBy diagRule rel'
in taggedValsToEquivClasses rel''
-- | Compute the CanonicalEmbs(D) set given \sim relation
canonicalEmbs :: EquivRel DiagEmb
-> [DiagEmb]
canonicalEmbs sim' =
foldl (\l -> \(e : _) -> (e : l)) [] sim'
-- | Convert given \cong_\tau relation to the canonical form
-- w.r.t. given \sim relation
canonicalCong_tau :: EquivRel DiagEmbWord
-> EquivRel DiagEmb
-> EquivRel DiagEmbWord
canonicalCong_tau ct sim' =
let mapEmb e = let Just (ce : _) = find (elem e) sim'
in ce
mapWord w = map mapEmb w
mapEqcl ec = map mapWord ec
in map mapEqcl ct
-- | Convert a word to a list of sorts that are embedded
wordToEmbPath :: DiagEmbWord
-> [SORT]
wordToEmbPath [] = []
wordToEmbPath ((_, s1, s2) : embs1) =
let rest [] = []
rest ((_, s, _) : embs2) = (rest embs2) ++ [s]
in (rest embs1) ++ [s1, s2]
hasCellCaslAmalgOpt :: [CASLAmalgOpt] -> Bool
hasCellCaslAmalgOpt = any ( \ o -> case o of
Cell -> True
_ -> False)
hasColimitThinnessOpt :: [CASLAmalgOpt] -> Bool
hasColimitThinnessOpt = any ( \ o -> case o of
ColimitThinness -> True
_ -> False)
-- | The amalgamability checking function for CASL.
ensuresAmalgamability :: [CASLAmalgOpt] -- ^ program options
-> CASLDiag -- ^ the diagram to be checked
-> [(Node, CASLMor)] -- ^ the sink
-> Tree.Gr String String
-- ^ the diagram containing descriptions of nodes and edges
-> Result Amalgamates
ensuresAmalgamability opts diag sink desc =
if null opts then return (DontKnow "Skipping amalgamability check")
else let -- aux. functions that help printing out diagnostics
getNodeSig _ [] = emptySign () -- this should never be the case
getNodeSig n ((n1, sig) : nss) = if n == n1 then sig else getNodeSig n nss
lns = labNodes diag
formatOp (idt, t) = showDoc idt " :" ++ showDoc t ""
formatPred (idt, t) = showDoc idt " : " ++ showDoc t ""
formatSig n = case find (\(n', d) -> n' == n && d /= "") (labNodes desc) of
Just (_, d) -> d
Nothing -> showDoc (getNodeSig n lns) ""
-- and now the relevant stuff
s = {-trace ("Diagram: " ++ showDoc diag "\n Sink: "
++ showDoc sink "")-} simeq diag
st = simeq_tau sink
{- 1. Check the inclusion (*). If it doesn't hold, the
specification is incorrect. -}
in case subRelation st s of
Just (ns1, ns2) -> let
sortString1 = showDoc (snd ns1) " in\n\n" ++ formatSig (fst ns1)
++ "\n\n"
sortString2 = showDoc (snd ns2) " in\n\n" ++ formatSig (fst ns2)
++ "\n\n"
in return (NoAmalgamation ("\nsorts " ++ sortString1
++ "and " ++ sortString2 ++ "might be different"))
Nothing -> let
sop = simeqOp diag
sopt = simeqOp_tau sink
{- 2. Check sharing of operations. If the check
fails, the specification is incorrect -}
in case subRelation sopt sop of
Just (nop1, nop2) -> let
opString1 = formatOp (snd nop1) ++
" in\n\n" ++ formatSig (fst nop1) ++ "\n\n"
opString2 = formatOp (snd nop2) ++
" in\n\n" ++ formatSig (fst nop2) ++ "\n\n"
in return (NoAmalgamation ("\noperations "
++ opString1 ++ "and " ++ opString2
++ "might be different"))
Nothing -> let
spred = simeqPred diag
spredt = simeqPred_tau sink
{- 3. Check sharing of predicates. If the
check fails, the specification is incorrect -}
in case subRelation spredt spred of
Just (np1, np2) -> let
pString1 = formatPred (snd np1) ++
" in\n\n" ++ formatSig (fst np1) ++ "\n\n"
pString2 = formatPred (snd np2) ++
" in\n\n" ++ formatSig (fst np2) ++ "\n\n"
in return (NoAmalgamation ("\npredicates "
++ pString1 ++ "and " ++ pString2
++ "might be different"))
Nothing -> if not (hasCellCaslAmalgOpt opts
|| hasColimitThinnessOpt opts)
then return defaultDontKnow else let
ct = cong_tau diag sink st
{- As we will be using a finite representation
of \cong_0 that may not contain some of the
equivalence classes with only one element
it's sufficient to check that the subrelation
ct0 of ct that has only non-reflexive
elements is a subrelation of \cong_0. -}
ct0 = filter (\l -> length l > 1) ct
c0 = cong_0 diag s
{- 2. Check the simple case: \cong_0 \in
\cong, so if \cong_\tau \in \cong_0 the
specification is correct. -}
in case subRelation ct0 c0 of
Nothing -> return Amalgamates
Just _ -> let
em = embs diag
cem = canonicalEmbs si
mas = finiteAdm_simeq cem s
si = sim diag em
cct = canonicalCong_tau ct si
-- 3. Check if the set Adm_\simeq is finite.
in case mas of
Just cas -> {- 4. check the colimit thinness. If
the colimit is thing then the
specification is correct. -}
if hasColimitThinnessOpt opts && colimitIsThin s em c0
then return Amalgamates else let
c = cong diag cas s si
--c = cong diag as s
-- 5. Check the cell condition in its full generality.
in if hasCellCaslAmalgOpt opts
then case subRelation cct c of
Just (w1, w2) -> let
rendEmbPath [] = []
rendEmbPath (h : w) = foldl (\t -> \srt -> t ++ " < "
++ showDoc srt "")
(showDoc h "") w
word1 = rendEmbPath (wordToEmbPath w1)
word2 = rendEmbPath (wordToEmbPath w2)
in return (NoAmalgamation ("embedding paths \n "
++ word1 ++ "\nand\n " ++ word2
++ "\nmight be different"))
Nothing -> return Amalgamates
else return defaultDontKnow
Nothing -> let
cR = congR diag s si
{- 6. Check the restricted cell condition. If it holds
then the specification is correct. Otherwise proof
obligations need to be generated. -}
in if hasCellCaslAmalgOpt opts then case subRelation cct cR of
Just _ -> return defaultDontKnow
-- TODO: generate proof obligations
Nothing -> return Amalgamates
else return defaultDontKnow