Cross Reference: /hets/CASL/AS_Basic_CASL.der.hs
AS_Basic_CASL.der.hs revision 414029fc573cb2506241ed5a17643f9f721502b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
1788N/A{-# LANGUAGE DeriveDataTypeable #-}
1788N/A{- |
1788N/AModule : ./CASL/AS_Basic_CASL.der.hs
1788N/ADescription : Abstract syntax of CASL basic specifications
1788N/ACopyright : (c) Klaus Luettich, Christian Maeder, Uni Bremen 2002-2006
1788N/ALicense : GPLv2 or higher, see LICENSE.txt
1788N/A
1788N/AMaintainer : Christian.Maeder@dfki.de
1788N/AStability : provisional
1788N/APortability : portable
1788N/A
1788N/AAbstract Syntax of CASL Basic_specs, Symb_items and Symb_map_items.
1788N/A
1788N/A Follows Sect. II:2.2 of the CASL Reference Manual.
1788N/A-}
1788N/A
1788N/Amodule CASL.AS_Basic_CASL where
1788N/A
1788N/Aimport Common.Id
1788N/Aimport Common.AS_Annotation
1788N/A
1788N/Aimport Data.Data
1788N/Aimport Data.Function
1788N/Aimport Data.List
1788N/Aimport qualified Data.Set as Set
1788N/A
1788N/A-- DrIFT command
1788N/A{-! global: GetRange !-}
1788N/A
1788N/Adata BASIC_SPEC b s f = Basic_spec [Annoted (BASIC_ITEMS b s f)]
1788N/A deriving (Show, Typeable, Data)
1788N/A
1788N/Adata BASIC_ITEMS b s f = Sig_items (SIG_ITEMS s f)
1788N/A {- the Annotation following the keyword is dropped
1788N/A but preceding the keyword is now an Annotation allowed -}
1788N/A | Free_datatype SortsKind [Annoted DATATYPE_DECL] Range
1788N/A -- pos: free, type, semi colons
1788N/A | Sort_gen [Annoted (SIG_ITEMS s f)] Range
1788N/A -- pos: generated, opt. braces
1788N/A | Var_items [VAR_DECL] Range
1788N/A -- pos: var, semi colons
1788N/A | Local_var_axioms [VAR_DECL] [Annoted (FORMULA f)] Range
1788N/A -- pos: forall, semi colons, dots
1788N/A | Axiom_items [Annoted (FORMULA f)] Range
1788N/A -- pos: dots
1788N/A | Ext_BASIC_ITEMS b
1788N/A deriving (Show, Typeable, Data)
1788N/A
1788N/Adata SortsKind = NonEmptySorts | PossiblyEmptySorts deriving (Show, Typeable, Data)
1788N/A
1788N/Adata SIG_ITEMS s f = Sort_items SortsKind [Annoted (SORT_ITEM f)] Range
1788N/A -- pos: sort, semi colons
1788N/A | Op_items [Annoted (OP_ITEM f)] Range
1788N/A -- pos: op, semi colons
1788N/A | Pred_items [Annoted (PRED_ITEM f)] Range
1788N/A -- pos: pred, semi colons
1788N/A | Datatype_items SortsKind [Annoted DATATYPE_DECL] Range
1788N/A -- type, semi colons
1788N/A | Ext_SIG_ITEMS s
1788N/A deriving (Show, Typeable, Data)
1788N/A
1788N/Adata SORT_ITEM f = Sort_decl [SORT] Range
1788N/A -- pos: commas
| Subsort_decl [SORT] SORT Range
-- pos: commas, <
| Subsort_defn SORT VAR SORT (Annoted (FORMULA f)) Range
{- pos: "=", "{", ":", ".", "}"
the left anno list stored in Annoted Formula is
parsed after the equal sign -}
| Iso_decl [SORT] Range
-- pos: "="s
deriving (Show, Typeable, Data)
data OP_ITEM f = Op_decl [OP_NAME] OP_TYPE [OP_ATTR f] Range
-- pos: commas, colon, OP_ATTR sep. by commas
| Op_defn OP_NAME OP_HEAD (Annoted (TERM f)) Range
-- pos: "="
deriving (Show, Typeable, Data)
data OpKind = Total | Partial deriving (Show, Eq, Ord, Typeable, Data)
data OP_TYPE = Op_type OpKind [SORT] SORT Range
-- pos: "*"s, "->" ; if null [SORT] then Range = [] or pos: "?"
deriving (Show, Eq, Ord, Typeable, Data)
args_OP_TYPE :: OP_TYPE -> [SORT]
args_OP_TYPE (Op_type _ args _ _) = args
res_OP_TYPE :: OP_TYPE -> SORT
res_OP_TYPE (Op_type _ _ res _) = res
data OP_HEAD = Op_head OpKind [VAR_DECL] (Maybe SORT) Range
-- pos: "(", semicolons, ")", colon
deriving (Show, Eq, Ord, Typeable, Data)
data OP_ATTR f = Assoc_op_attr | Comm_op_attr | Idem_op_attr
| Unit_op_attr (TERM f)
deriving (Show, Eq, Ord, Typeable, Data)
data PRED_ITEM f = Pred_decl [PRED_NAME] PRED_TYPE Range
-- pos: commas, colon
| Pred_defn PRED_NAME PRED_HEAD (Annoted (FORMULA f)) Range
-- pos: "<=>"
deriving (Show, Typeable, Data)
data PRED_TYPE = Pred_type [SORT] Range
-- pos: if null [SORT] then "(",")" else "*"s
deriving (Show, Eq, Ord, Typeable, Data)
data PRED_HEAD = Pred_head [VAR_DECL] Range
-- pos: "(",semi colons , ")"
deriving (Show, Typeable, Data)
data DATATYPE_DECL = Datatype_decl SORT [Annoted ALTERNATIVE] Range
-- pos: "::=", "|"s
deriving (Show, Typeable, Data)
data ALTERNATIVE = Alt_construct OpKind OP_NAME [COMPONENTS] Range
-- pos: "(", semi colons, ")" optional "?"
| Subsorts [SORT] Range
-- pos: sort, commas
deriving (Show, Typeable, Data)
data COMPONENTS = Cons_select OpKind [OP_NAME] SORT Range
-- pos: commas, colon or ":?"
| Sort SORT
deriving (Show, Typeable, Data)
data VAR_DECL = Var_decl [VAR] SORT Range
-- pos: commas, colon
deriving (Show, Eq, Ord, Typeable, Data)
varDeclRange :: VAR_DECL -> [Pos]
varDeclRange (Var_decl vs s _) = case vs of
[] -> []
v : _ -> joinRanges [tokenRange v, idRange s]
{- Position definition for FORMULA:
Information on parens are also encoded in Range. If there
are more Pos than necessary there is a pair of Pos enclosing the
other Pos informations which encode the brackets of every kind
-}
data Junctor = Con | Dis deriving (Show, Eq, Ord, Typeable, Data)
dualJunctor :: Junctor -> Junctor
dualJunctor Con = Dis
dualJunctor Dis = Con
data Relation = Implication | RevImpl | Equivalence
deriving (Show, Eq, Ord, Typeable, Data)
data Equality = Strong | Existl deriving (Show, Eq, Ord, Typeable, Data)
data FORMULA f = Quantification QUANTIFIER [VAR_DECL] (FORMULA f) Range
-- pos: QUANTIFIER, semi colons, dot
| Junction Junctor [FORMULA f] Range
-- pos: "/\"s or "\/"s
| Relation (FORMULA f) Relation (FORMULA f) Range
{- pos: "<=>", "=>" or "if"
Note: The first formula is the premise also for "if"!
Explicitly: During parsing, "f2 if f1" is saved as
"Relation f1 RevImpl f2 _" -}
| Negation (FORMULA f) Range
-- pos: not
| Atom Bool Range
-- pos: true or false
| Predication PRED_SYMB [TERM f] Range
-- pos: opt. "(",commas,")"
| Definedness (TERM f) Range
-- pos: def
| Equation (TERM f) Equality (TERM f) Range
-- pos: =e= or =
| Membership (TERM f) SORT Range
-- pos: in
| Mixfix_formula (TERM f)
{- Mixfix_ Term/Token/(..)/[..]/{..}
a formula left original for mixfix analysis -}
| Unparsed_formula String Range
-- pos: first Char in String
| Sort_gen_ax [Constraint] Bool -- flag: belongs to a free type?
| QuantOp OP_NAME OP_TYPE (FORMULA f) -- second order quantifiers
| QuantPred PRED_NAME PRED_TYPE (FORMULA f)
| ExtFORMULA f
-- needed for CASL extensions
deriving (Show, Eq, Ord, Typeable, Data)
mkSort_gen_ax :: [Constraint] -> Bool -> FORMULA f
mkSort_gen_ax = Sort_gen_ax . sortConstraints
is_True_atom :: FORMULA f -> Bool
is_True_atom f = case f of
Atom b _ -> b
_ -> False
is_False_atom :: FORMULA f -> Bool
is_False_atom f = case f of
Atom b _ -> not b
_ -> False
boolForm :: Bool -> FORMULA f
boolForm b = Atom b nullRange
trueForm :: FORMULA f
trueForm = boolForm True
falseForm :: FORMULA f
falseForm = boolForm False
{- In the CASL institution, sort generation constraints have an
additional signature morphism component (Sect. III:2.1.3, p.134 of the
CASL Reference Manual). The extra signature morphism component is
needed because the naive translation of sort generation constraints
along signature morphisms may violate the satisfaction condition,
namely when sorts are identified by the translation, with the effect
that new terms can be formed. We avoid this extra component here and
instead use natural numbers to decorate sorts, in this way retaining
their identity w.r.t. the original signature. The newSort in a
Constraint is implicitly decorated with its index in the list of
Constraints. The opSymbs component collects all the operation symbols
with newSort (with that index!) as a result sort. The argument sorts
of an operation symbol are decorated explicitly via a list [Int] of
integers. The origSort in a Constraint is the original sort
corresponding to the index. A negative index indicates a sort outside
the constraint (i.e. a "parameter sort"). Note that this representation of
sort generation constraints is efficiently tailored towards both the use in
the proof calculus (Chap. IV:2, p. 282 of the CASL Reference Manual)
and the coding into second order logic (p. 429 of Theoret. Comp. Sci. 286).
-}
data Constraint = Constraint { newSort :: SORT,
opSymbs :: [(OP_SYMB, [Int])],
origSort :: SORT }
deriving (Show, Typeable, Data)
instance Ord Constraint where
compare (Constraint s1 cs1 _) (Constraint s2 cs2 _) =
compare (s1, map fst cs1) (s2, map fst cs2)
instance Eq Constraint where
a == b = compare a b == EQ
sortConstraints :: [Constraint] -> [Constraint]
sortConstraints cs = let
nCs = sort cs
iS = map(\ c -> let
Just j = findIndex ((origSort c ==) . origSort) nCs in j) cs
updInd i = if i < 0 then i else iS !! i
in
map (\ (Constraint s os o) ->
Constraint s (sortBy (on compare fst)
$ map (\ (c, is) -> (c, map updInd is)) os) o) nCs
-- | no duplicate sorts, i.e. injective sort map?
isInjectiveList :: Ord a => [a] -> Bool
isInjectiveList l = Set.size (Set.fromList l) == length l
{- | from a Sort_gex_ax, recover:
a traditional sort generation constraint plus a sort mapping -}
recover_Sort_gen_ax :: [Constraint] ->
([SORT], [OP_SYMB], [(SORT, SORT)])
recover_Sort_gen_ax constrs =
if isInjectiveList sorts
-- we can ignore indices
then (sorts, map fst (concatMap opSymbs constrs), [])
{- otherwise, we have to introduce new sorts for the indices
and afterwards rename them into the sorts they denote -}
else (origSorts, indOps, zip origSorts sorts)
where
sorts = map newSort constrs
origSorts = map origSort constrs
indSort s i = if i < 0 then s else origSorts !! i
indOps = concatMap (\ c -> map (indOp $ origSort c) $ opSymbs c) constrs
indOp res (Qual_op_name opn (Op_type k args1 _ pos1) pos, args) =
Qual_op_name opn
(Op_type k (zipWith indSort args1 args) res pos1) pos
indOp _ _ = error
"CASL/AS_Basic_CASL: Internal error: Unqualified OP_SYMB in Sort_gen_ax"
{- | from a Sort_gen_ax, recover:
the sorts, each paired with the constructors -}
recoverSortGen :: [Constraint] -> [(SORT, [OP_SYMB])]
recoverSortGen = map $ \ c -> (newSort c, map fst $ opSymbs c)
{- | from a free Sort_gen_ax, recover:
the sorts, each paired with the constructors
fails (i.e. delivers Nothing) if the sort map is not injective -}
recover_free_Sort_gen_ax :: [Constraint] -> Maybe [(SORT, [OP_SYMB])]
recover_free_Sort_gen_ax constrs =
if isInjectiveList $ map newSort constrs
then Just $ recoverSortGen constrs
else Nothing
-- | determine whether a formula is a sort generation constraint
isSortGen :: FORMULA f -> Bool
isSortGen f = case f of
Sort_gen_ax _ _ -> True
_ -> False
data QUANTIFIER = Universal | Existential | Unique_existential
deriving (Show, Eq, Ord, Typeable, Data)
data PRED_SYMB = Pred_name PRED_NAME
| Qual_pred_name PRED_NAME PRED_TYPE Range
-- pos: "(", pred, colon, ")"
deriving (Show, Eq, Ord, Typeable, Data)
predSymbName :: PRED_SYMB -> PRED_NAME
predSymbName p = case p of
Pred_name n -> n
Qual_pred_name n _ _ -> n
data TERM f = Qual_var VAR SORT Range -- pos: "(", var, colon, ")"
| Application OP_SYMB [TERM f] Range
-- pos: parens around TERM f if any and seperating commas
| Sorted_term (TERM f) SORT Range
-- pos: colon
| Cast (TERM f) SORT Range
-- pos: "as"
| Conditional (TERM f) (FORMULA f) (TERM f) Range
-- pos: "when", "else"
| Unparsed_term String Range -- SML-CATS
-- A new intermediate state
| Mixfix_qual_pred PRED_SYMB -- as part of a mixfix formula
| Mixfix_term [TERM f] -- not starting with Mixfix_sorted_term/cast
| Mixfix_token Token -- NO-BRACKET-TOKEN, LITERAL, PLACE
| Mixfix_sorted_term SORT Range
-- pos: colon
| Mixfix_cast SORT Range
-- pos: "as"
| Mixfix_parenthesized [TERM f] Range
{- non-emtpy term list
pos: "(", commas, ")" -}
| Mixfix_bracketed [TERM f] Range
-- pos: "[", commas, "]"
| Mixfix_braced [TERM f] Range
{- also for list-notation
pos: "{", "}" -}
| ExtTERM f
deriving (Show, Eq, Ord, Typeable, Data)
-- | state after mixfix- but before overload resolution
varOrConst :: Token -> TERM f
varOrConst t = Application (Op_name $ simpleIdToId t) [] $ tokPos t
data OP_SYMB = Op_name OP_NAME
| Qual_op_name OP_NAME OP_TYPE Range
-- pos: "(", op, colon, ")"
deriving (Show, Eq, Ord, Typeable, Data)
opSymbName :: OP_SYMB -> OP_NAME
opSymbName o = case o of
Op_name n -> n
Qual_op_name n _ _ -> n
-- * short cuts for terms and formulas
-- | create binding if variables are non-null
mkForallRange :: [VAR_DECL] -> FORMULA f -> Range -> FORMULA f
mkForallRange vl f ps =
if null vl then f else Quantification Universal vl f ps
mkForall :: [VAR_DECL] -> FORMULA f -> FORMULA f
mkForall vl f = mkForallRange vl f nullRange
-- | create an existential binding
mkExist :: [VAR_DECL] -> FORMULA f -> FORMULA f
mkExist vs f = Quantification Existential vs f nullRange
-- | convert a singleton variable declaration into a qualified variable
toQualVar :: VAR_DECL -> TERM f
toQualVar (Var_decl v s ps) =
if isSingle v then Qual_var (head v) s ps else error "toQualVar"
mkRel :: Relation -> FORMULA f -> FORMULA f -> FORMULA f
mkRel r f f' = Relation f r f' nullRange
mkImpl :: FORMULA f -> FORMULA f -> FORMULA f
mkImpl = mkRel Implication
mkAnyEq :: Equality -> TERM f -> TERM f -> FORMULA f
mkAnyEq e f f' = Equation f e f' nullRange
mkExEq :: TERM f -> TERM f -> FORMULA f
mkExEq = mkAnyEq Existl
mkStEq :: TERM f -> TERM f -> FORMULA f
mkStEq = mkAnyEq Strong
mkEqv :: FORMULA f -> FORMULA f -> FORMULA f
mkEqv = mkRel Equivalence
mkAppl :: OP_SYMB -> [TERM f] -> TERM f
mkAppl op_symb fs = Application op_symb fs nullRange
mkPredication :: PRED_SYMB -> [TERM f] -> FORMULA f
mkPredication symb fs = Predication symb fs nullRange
-- | turn sorted variable into variable delcaration
mkVarDecl :: VAR -> SORT -> VAR_DECL
mkVarDecl v s = Var_decl [v] s nullRange
-- | turn sorted variable into term
mkVarTerm :: VAR -> SORT -> TERM f
mkVarTerm v = toQualVar . mkVarDecl v
-- | optimized conjunction
conjunctRange :: [FORMULA f] -> Range -> FORMULA f
conjunctRange fs ps = case fs of
[] -> Atom True ps
[phi] -> phi
_ -> Junction Con fs ps
conjunct :: [FORMULA f] -> FORMULA f
conjunct fs = conjunctRange fs nullRange
disjunctRange :: [FORMULA f] -> Range -> FORMULA f
disjunctRange fs ps = case fs of
[] -> Atom False ps
[phi] -> phi
_ -> Junction Dis fs ps
disjunct :: [FORMULA f] -> FORMULA f
disjunct fs = disjunctRange fs nullRange
mkQualOp :: OP_NAME -> OP_TYPE -> OP_SYMB
mkQualOp f ty = Qual_op_name f ty nullRange
mkQualPred :: PRED_NAME -> PRED_TYPE -> PRED_SYMB
mkQualPred f ty = Qual_pred_name f ty nullRange
negateForm :: FORMULA f -> Range -> FORMULA f
negateForm f r = case f of
Atom b ps -> Atom (not b) ps
Negation nf _ -> nf
_ -> Negation f r
mkNeg :: FORMULA f -> FORMULA f
mkNeg f = negateForm f nullRange
mkVarDeclStr :: String -> SORT -> VAR_DECL
mkVarDeclStr = mkVarDecl . mkSimpleId
-- * type synonyms
type CASLFORMULA = FORMULA ()
type CASLTERM = TERM ()
type OP_NAME = Id
type PRED_NAME = Id
type SORT = Id
type VAR = Token
data SYMB_ITEMS = Symb_items SYMB_KIND [SYMB] Range
-- pos: SYMB_KIND, commas
deriving (Show, Eq, Ord, Typeable, Data)
symbItemsName :: SYMB_ITEMS -> [String]
symbItemsName (Symb_items _ syms _ ) =
map (\x -> case x of
Symb_id i -> show i
Qual_id i _ _ -> show i) syms
data SYMB_MAP_ITEMS = Symb_map_items SYMB_KIND [SYMB_OR_MAP] Range
-- pos: SYMB_KIND, commas
deriving (Show, Eq, Ord, Typeable, Data)
data SYMB_KIND = Implicit | Sorts_kind
| Ops_kind | Preds_kind
deriving (Show, Eq, Ord, Typeable, Data)
data SYMB = Symb_id Id
| Qual_id Id TYPE Range
-- pos: colon
deriving (Show, Eq, Ord, Typeable, Data)
data TYPE = O_type OP_TYPE
| P_type PRED_TYPE
| A_type SORT -- ambiguous pred or (constant total) op
deriving (Show, Eq, Ord, Typeable, Data)
data SYMB_OR_MAP = Symb SYMB
| Symb_map SYMB SYMB Range
-- pos: "|->"
deriving (Show, Eq, Ord, Typeable, Data)