entropy.c revision 2d67c2474475acf52c8251dc48bfb7565ee5f2ff
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson/*
d3498432822fb487e58f8f72bb5f880dd8307d7dMichael Sawyer * Copyright (C) 2000, 2001 Internet Software Consortium.
d3498432822fb487e58f8f72bb5f880dd8307d7dMichael Sawyer *
d3498432822fb487e58f8f72bb5f880dd8307d7dMichael Sawyer * Permission to use, copy, modify, and distribute this software for any
d3498432822fb487e58f8f72bb5f880dd8307d7dMichael Sawyer * purpose with or without fee is hereby granted, provided that the above
d3498432822fb487e58f8f72bb5f880dd8307d7dMichael Sawyer * copyright notice and this permission notice appear in all copies.
d3498432822fb487e58f8f72bb5f880dd8307d7dMichael Sawyer *
d3498432822fb487e58f8f72bb5f880dd8307d7dMichael Sawyer * THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM
d3498432822fb487e58f8f72bb5f880dd8307d7dMichael Sawyer * DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL
d3498432822fb487e58f8f72bb5f880dd8307d7dMichael Sawyer * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
d3498432822fb487e58f8f72bb5f880dd8307d7dMichael Sawyer * INTERNET SOFTWARE CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT,
d3498432822fb487e58f8f72bb5f880dd8307d7dMichael Sawyer * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
d3498432822fb487e58f8f72bb5f880dd8307d7dMichael Sawyer * FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
d3498432822fb487e58f8f72bb5f880dd8307d7dMichael Sawyer * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
d3498432822fb487e58f8f72bb5f880dd8307d7dMichael Sawyer * WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
d3498432822fb487e58f8f72bb5f880dd8307d7dMichael Sawyer */
d3498432822fb487e58f8f72bb5f880dd8307d7dMichael Sawyer
c51203011182577cbb53a6d16d496aa9697fff5cAndreas Gustafsson/* $Id: entropy.c,v 1.1 2001/06/21 14:19:20 tale Exp $ */
c51203011182577cbb53a6d16d496aa9697fff5cAndreas Gustafsson
c51203011182577cbb53a6d16d496aa9697fff5cAndreas Gustafsson/*
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson * This is the system depenedent part of the ISC entropy API.
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson */
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson#include <config.h>
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson
a2b565626ba9a98eecc7b82cb86c6d68c38d3d94Michael Sawyer#include <windows.h>
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson#include <wincrypt.h>
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson#include <process.h>
c51203011182577cbb53a6d16d496aa9697fff5cAndreas Gustafsson#include <io.h>
c51203011182577cbb53a6d16d496aa9697fff5cAndreas Gustafsson#include <share.h>
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson
c51203011182577cbb53a6d16d496aa9697fff5cAndreas Gustafsson/*
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson * There is only one variable in the entropy data structures that is not
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson * system independent, but pulling the structure that uses it into this file
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson * ultimately means pulling several other independent structures here also to
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson * resolve their interdependencies. Thus only the problem variable's type
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson * is defined here.
5a3e08cbb2fc02f38edd784be8fc0549b92f02e8Michael Sawyer */
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson#define FILESOURCE_HANDLE_TYPE HCRYPTPROV
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson
0e9dcd548051a8ec34744bfa18b4e09fea742a39Andreas Gustafsson#include "../entropy.c"
static unsigned int
get_from_filesource(isc_entropysource_t *source, isc_uint32_t desired) {
isc_entropy_t *ent = source->ent;
unsigned char buf[128];
HCRYPTPROV hcryptprov = source->sources.file.handle;
ssize_t ndesired;
unsigned int added;
if (source->bad)
return (0);
desired = desired / 8 + (((desired & 0x07) > 0) ? 1 : 0);
added = 0;
while (desired > 0) {
ndesired = ISC_MIN(desired, sizeof(buf));
if(!CryptGenRandom(hcryptprov, ndesired, buf)) {
CryptReleaseContext(hcryptprov, 0);
source->bad = ISC_TRUE;
goto out;
}
entropypool_adddata(ent, buf, ndesired, ndesired * 8);
added += ndesired * 8;
desired -= ndesired;
}
out:
return (added);
}
static unsigned int
get_from_callback(isc_entropysource_t *source, unsigned int desired,
isc_boolean_t blocking)
{
isc_entropy_t *ent = source->ent;
isc_cbsource_t *cbs = &source->sources.callback;
unsigned int added;
unsigned int got;
isc_result_t result;
if (desired == 0)
return (0);
if (source->bad)
return (0);
if (!cbs->start_called && cbs->startfunc != NULL) {
result = cbs->startfunc(source, cbs->arg, blocking);
if (result != ISC_R_SUCCESS)
return (0);
cbs->start_called = ISC_TRUE;
}
added = 0;
result = ISC_R_SUCCESS;
while (desired > 0 && result == ISC_R_SUCCESS) {
result = cbs->getfunc(source, cbs->arg, blocking);
if (result == ISC_R_QUEUEFULL) {
got = crunchsamples(ent, &cbs->samplequeue);
added += got;
desired -= ISC_MIN(got, desired);
result = ISC_R_SUCCESS;
} else if (result != ISC_R_SUCCESS &&
result != ISC_R_NOTBLOCKING)
source->bad = ISC_TRUE;
}
return (added);
}
/*
* Poll each source, trying to get data from it to stuff into the entropy
* pool.
*/
static void
fillpool(isc_entropy_t *ent, unsigned int desired, isc_boolean_t blocking) {
unsigned int added;
unsigned int remaining;
unsigned int needed;
unsigned int nsource;
isc_entropysource_t *source;
isc_entropysource_t *firstsource;
REQUIRE(VALID_ENTROPY(ent));
needed = desired;
/*
* This logic is a little strange, so an explanation is in order.
*
* If needed is 0, it means we are being asked to "fill to whatever
* we think is best." This means that if we have at least a
* partially full pool (say, > 1/4th of the pool) we probably don't
* need to add anything.
*
* Also, we will check to see if the "pseudo" count is too high.
* If it is, try to mix in better data. Too high is currently
* defined as 1/4th of the pool.
*
* Next, if we are asked to add a specific bit of entropy, make
* certain that we will do so. Clamp how much we try to add to
* (DIGEST_SIZE * 8 < needed < POOLBITS - entropy).
*
* Note that if we are in a blocking mode, we will only try to
* get as much data as we need, not as much as we might want
* to build up.
*/
if (needed == 0) {
REQUIRE(!blocking);
if ((ent->pool.entropy >= RND_POOLBITS / 4)
&& (ent->pool.pseudo <= RND_POOLBITS / 4))
return;
needed = THRESHOLD_BITS * 4;
} else {
needed = ISC_MAX(needed, THRESHOLD_BITS);
needed = ISC_MIN(needed, RND_POOLBITS);
}
/*
* In any case, clamp how much we need to how much we can add.
*/
needed = ISC_MIN(needed, RND_POOLBITS - ent->pool.entropy);
/*
* But wait! If we're not yet initialized, we need at least
* THRESHOLD_BITS
* of randomness.
*/
if (ent->initialized < THRESHOLD_BITS)
needed = ISC_MAX(needed, THRESHOLD_BITS - ent->initialized);
/*
* Poll each file source to see if we can read anything useful from
* it. XXXMLG When where are multiple sources, we should keep a
* record of which one we last used so we can start from it (or the
* next one) to avoid letting some sources build up entropy while
* others are always drained.
*/
added = 0;
remaining = needed;
if (ent->nextsource == NULL) {
ent->nextsource = ISC_LIST_HEAD(ent->sources);
if (ent->nextsource == NULL)
return;
}
source = ent->nextsource;
/*
* Remember the first source so we can break if we have looped back to
* the beginning and still have nothing
*/
firstsource = source;
again_file:
for (nsource = 0 ; nsource < ent->nsources ; nsource++) {
unsigned int got;
if (remaining == 0)
break;
got = 0;
if (source->type == ENTROPY_SOURCETYPE_FILE)
got = get_from_filesource(source, remaining);
added += got;
remaining -= ISC_MIN(remaining, got);
source = ISC_LIST_NEXT(source, link);
if (source == NULL)
source = ISC_LIST_HEAD(ent->sources);
}
ent->nextsource = source;
/*
* Go again only if there's been progress and we've not
* gone back to the beginning
*/
if (!(ent->nextsource == firstsource && added == 0)) {
if (blocking && remaining != 0) {
goto again_file;
}
}
/*
* Here, if there are bits remaining to be had and we can block,
* check to see if we have a callback source. If so, call them.
*/
source = ISC_LIST_HEAD(ent->sources);
while ((remaining != 0) && (source != NULL)) {
unsigned int got;
got = 0;
if (source->type == ENTROPY_SOURCETYPE_CALLBACK)
got = get_from_callback(source, remaining, blocking);
added += got;
remaining -= ISC_MIN(remaining, got);
if (added >= needed)
break;
source = ISC_LIST_NEXT(source, link);
}
/*
* Mark as initialized if we've added enough data.
*/
if (ent->initialized < THRESHOLD_BITS)
ent->initialized += added;
}
/*
* Extract some number of bytes from the random pool, decreasing the
* estimate of randomness as each byte is extracted.
*
* Do this by stiring the pool and returning a part of hash as randomness.
* Note that no secrets are given away here since parts of the hash are
* xored together before returned.
*
* Honor the request from the caller to only return good data, any data,
* etc.
*/
isc_result_t
isc_entropy_getdata(isc_entropy_t *ent, void *data, unsigned int length,
unsigned int *returned, unsigned int flags)
{
unsigned int i;
isc_sha1_t hash;
unsigned char digest[ISC_SHA1_DIGESTLENGTH];
isc_uint32_t remain, deltae, count, total;
isc_uint8_t *buf;
isc_boolean_t goodonly, partial, blocking;
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(data != NULL);
REQUIRE(length > 0);
goodonly = ISC_TF((flags & ISC_ENTROPY_GOODONLY) != 0);
partial = ISC_TF((flags & ISC_ENTROPY_PARTIAL) != 0);
blocking = ISC_TF((flags & ISC_ENTROPY_BLOCKING) != 0);
REQUIRE(!partial || returned != NULL);
LOCK(&ent->lock);
remain = length;
buf = data;
total = 0;
while (remain != 0) {
count = ISC_MIN(remain, RND_ENTROPY_THRESHOLD);
/*
* If we are extracting good data only, make certain we
* have enough data in our pool for this pass. If we don't,
* get some, and fail if we can't, and partial returns
* are not ok.
*/
if (goodonly) {
unsigned int fillcount;
fillcount = ISC_MAX(remain * 8, count * 8);
/*
* If, however, we have at least THRESHOLD_BITS
* of entropy in the pool, don't block here. It is
* better to drain the pool once in a while and
* then refill it than it is to constantly keep the
* pool full.
*/
if (ent->pool.entropy >= THRESHOLD_BITS)
fillpool(ent, fillcount, ISC_FALSE);
else
fillpool(ent, fillcount, blocking);
/*
* Verify that we got enough entropy to do one
* extraction. If we didn't, bail.
*/
if (ent->pool.entropy < THRESHOLD_BITS) {
if (!partial)
goto zeroize;
else
goto partial_output;
}
} else {
/*
* If we've extracted half our pool size in bits
* since the last refresh, try to refresh here.
*/
if (ent->initialized < THRESHOLD_BITS)
fillpool(ent, THRESHOLD_BITS, blocking);
else
fillpool(ent, 0, ISC_FALSE);
/*
* If we've not initialized with enough good random
* data, seed with our crappy code.
*/
if (ent->initialized < THRESHOLD_BITS)
reseed(ent);
}
isc_sha1_init(&hash);
isc_sha1_update(&hash, (void *)(ent->pool.pool),
RND_POOLBYTES);
isc_sha1_final(&hash, digest);
/*
* Stir the extracted data (all of it) back into the pool.
*/
entropypool_adddata(ent, digest, ISC_SHA1_DIGESTLENGTH, 0);
for (i = 0; i < count; i++)
buf[i] = digest[i] ^ digest[i + RND_ENTROPY_THRESHOLD];
buf += count;
remain -= count;
deltae = count * 8;
deltae = ISC_MIN(deltae, ent->pool.entropy);
total += deltae;
subtract_entropy(ent, deltae);
add_pseudo(ent, count * 8);
}
partial_output:
memset(digest, 0, sizeof(digest));
if (returned != NULL)
*returned = (length - remain);
UNLOCK(&ent->lock);
return (ISC_R_SUCCESS);
zeroize:
/* put the entropy we almost extracted back */
add_entropy(ent, total);
memset(data, 0, length);
memset(digest, 0, sizeof(digest));
if (returned != NULL)
*returned = 0;
UNLOCK(&ent->lock);
return (ISC_R_NOENTROPY);
}
static void
isc_entropypool_init(isc_entropypool_t *pool) {
pool->cursor = RND_POOLWORDS - 1;
pool->entropy = 0;
pool->pseudo = 0;
pool->rotate = 0;
memset(pool->pool, 0, RND_POOLBYTES);
}
static void
isc_entropypool_invalidate(isc_entropypool_t *pool) {
pool->cursor = 0;
pool->entropy = 0;
pool->pseudo = 0;
pool->rotate = 0;
memset(pool->pool, 0, RND_POOLBYTES);
}
isc_result_t
isc_entropy_create(isc_mem_t *mctx, isc_entropy_t **entp) {
isc_result_t ret;
isc_entropy_t *ent;
REQUIRE(mctx != NULL);
REQUIRE(entp != NULL && *entp == NULL);
ent = isc_mem_get(mctx, sizeof(isc_entropy_t));
if (ent == NULL)
return (ISC_R_NOMEMORY);
/*
* We need a lock.
*/
if (isc_mutex_init(&ent->lock) != ISC_R_SUCCESS) {
ret = ISC_R_UNEXPECTED;
goto errout;
}
/*
* From here down, no failures will/can occur.
*/
ISC_LIST_INIT(ent->sources);
ent->nextsource = NULL;
ent->nsources = 0;
ent->mctx = NULL;
isc_mem_attach(mctx, &ent->mctx);
ent->refcnt = 1;
ent->initialized = 0;
ent->initcount = 0;
ent->magic = ENTROPY_MAGIC;
isc_entropypool_init(&ent->pool);
*entp = ent;
return (ISC_R_SUCCESS);
errout:
isc_mem_put(mctx, ent, sizeof(isc_entropy_t));
return (ret);
}
/*
* Requires "ent" be locked.
*/
static void
destroyfilesource(isc_entropyfilesource_t *source) {
CryptReleaseContext(source->handle, 0);
}
static inline isc_boolean_t
destroy_check(isc_entropy_t *ent) {
isc_entropysource_t *source;
if (ent->refcnt > 0)
return (ISC_FALSE);
source = ISC_LIST_HEAD(ent->sources);
while (source != NULL) {
switch (source->type) {
case ENTROPY_SOURCETYPE_FILE:
break;
default:
return (ISC_FALSE);
}
source = ISC_LIST_NEXT(source, link);
}
return (ISC_TRUE);
}
static void
destroy(isc_entropy_t **entp) {
isc_entropy_t *ent;
isc_entropysource_t *source;
isc_mem_t *mctx;
REQUIRE(entp != NULL && *entp != NULL);
ent = *entp;
*entp = NULL;
LOCK(&ent->lock);
REQUIRE(ent->refcnt == 0);
/*
* Here, detach non-sample sources.
*/
source = ISC_LIST_HEAD(ent->sources);
while (source != NULL) {
switch(source->type) {
case ENTROPY_SOURCETYPE_FILE:
destroysource(&source);
break;
}
source = ISC_LIST_HEAD(ent->sources);
}
/*
* If there are other types of sources, we've found a bug.
*/
REQUIRE(ISC_LIST_EMPTY(ent->sources));
mctx = ent->mctx;
isc_entropypool_invalidate(&ent->pool);
UNLOCK(&ent->lock);
DESTROYLOCK(&ent->lock);
memset(ent, 0, sizeof(isc_entropy_t));
isc_mem_put(mctx, ent, sizeof(isc_entropy_t));
isc_mem_detach(&mctx);
}
isc_result_t
isc_entropy_createfilesource(isc_entropy_t *ent, const char *fname) {
isc_result_t ret;
isc_entropysource_t *source;
HCRYPTPROV hcryptprov;
DWORD errval;
BOOL err;
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(fname != NULL);
LOCK(&ent->lock);
source = NULL;
/*
* The first time we just try to acquire the context
*/
err = CryptAcquireContext(&hcryptprov, NULL, NULL, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT);
if(!err){
errval = GetLastError();
ret = ISC_R_IOERROR;
goto errout;
}
source = isc_mem_get(ent->mctx, sizeof(isc_entropysource_t));
if (source == NULL) {
ret = ISC_R_NOMEMORY;
goto closecontext;
}
/*
* From here down, no failures can occur.
*/
source->magic = SOURCE_MAGIC;
source->type = ENTROPY_SOURCETYPE_FILE;
source->ent = ent;
source->total = 0;
source->bad = ISC_FALSE;
memset(source->name, 0, sizeof(source->name));
ISC_LINK_INIT(source, link);
source->sources.file.handle = hcryptprov;
/*
* Hook it into the entropy system.
*/
ISC_LIST_APPEND(ent->sources, source, link);
ent->nsources++;
UNLOCK(&ent->lock);
return (ISC_R_SUCCESS);
closecontext:
CryptReleaseContext(hcryptprov, 0);
errout:
if (source != NULL)
isc_mem_put(ent->mctx, source, sizeof(isc_entropysource_t));
UNLOCK(&ent->lock);
return (ret);
}
void
isc_entropy_destroysource(isc_entropysource_t **sourcep) {
isc_entropysource_t *source;
isc_entropy_t *ent;
isc_boolean_t killit;
REQUIRE(sourcep != NULL);
REQUIRE(VALID_SOURCE(*sourcep));
source = *sourcep;
*sourcep = NULL;
ent = source->ent;
REQUIRE(VALID_ENTROPY(ent));
LOCK(&ent->lock);
destroysource(&source);
killit = destroy_check(ent);
UNLOCK(&ent->lock);
if (killit)
destroy(&ent);
}
isc_result_t
isc_entropy_createcallbacksource(isc_entropy_t *ent,
isc_entropystart_t start,
isc_entropyget_t get,
isc_entropystop_t stop,
void *arg,
isc_entropysource_t **sourcep)
{
isc_result_t ret;
isc_entropysource_t *source;
isc_cbsource_t *cbs;
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(get != NULL);
REQUIRE(sourcep != NULL && *sourcep == NULL);
LOCK(&ent->lock);
source = isc_mem_get(ent->mctx, sizeof(isc_entropysource_t));
if (source == NULL) {
ret = ISC_R_NOMEMORY;
goto errout;
}
source->bad = ISC_FALSE;
cbs = &source->sources.callback;
ret = samplesource_allocate(ent, &cbs->samplequeue);
if (ret != ISC_R_SUCCESS)
goto errout;
cbs->start_called = ISC_FALSE;
cbs->startfunc = start;
cbs->getfunc = get;
cbs->stopfunc = stop;
cbs->arg = arg;
/*
* From here down, no failures can occur.
*/
source->magic = SOURCE_MAGIC;
source->type = ENTROPY_SOURCETYPE_CALLBACK;
source->ent = ent;
source->total = 0;
memset(source->name, 0, sizeof(source->name));
ISC_LINK_INIT(source, link);
/*
* Hook it into the entropy system.
*/
ISC_LIST_APPEND(ent->sources, source, link);
ent->nsources++;
*sourcep = source;
UNLOCK(&ent->lock);
return (ISC_R_SUCCESS);
errout:
if (source != NULL)
isc_mem_put(ent->mctx, source, sizeof(isc_entropysource_t));
UNLOCK(&ent->lock);
return (ret);
}
void
isc_entropy_stopcallbacksources(isc_entropy_t *ent) {
isc_entropysource_t *source;
isc_cbsource_t *cbs;
REQUIRE(VALID_ENTROPY(ent));
LOCK(&ent->lock);
source = ISC_LIST_HEAD(ent->sources);
while (source != NULL) {
if (source->type == ENTROPY_SOURCETYPE_CALLBACK) {
cbs = &source->sources.callback;
if (cbs->start_called && cbs->stopfunc != NULL) {
cbs->stopfunc(source, cbs->arg);
cbs->start_called = ISC_FALSE;
}
}
source = ISC_LIST_NEXT(source, link);
}
UNLOCK(&ent->lock);
}
isc_result_t
isc_entropy_createsamplesource(isc_entropy_t *ent,
isc_entropysource_t **sourcep)
{
isc_result_t ret;
isc_entropysource_t *source;
sample_queue_t *sq;
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(sourcep != NULL && *sourcep == NULL);
LOCK(&ent->lock);
source = isc_mem_get(ent->mctx, sizeof(isc_entropysource_t));
if (source == NULL) {
ret = ISC_R_NOMEMORY;
goto errout;
}
sq = &source->sources.sample.samplequeue;
ret = samplesource_allocate(ent, sq);
if (ret != ISC_R_SUCCESS)
goto errout;
/*
* From here down, no failures can occur.
*/
source->magic = SOURCE_MAGIC;
source->type = ENTROPY_SOURCETYPE_SAMPLE;
source->ent = ent;
source->total = 0;
memset(source->name, 0, sizeof(source->name));
ISC_LINK_INIT(source, link);
/*
* Hook it into the entropy system.
*/
ISC_LIST_APPEND(ent->sources, source, link);
ent->nsources++;
*sourcep = source;
UNLOCK(&ent->lock);
return (ISC_R_SUCCESS);
errout:
if (source != NULL)
isc_mem_put(ent->mctx, source, sizeof(isc_entropysource_t));
UNLOCK(&ent->lock);
return (ret);
}
static inline unsigned int
estimate_entropy(sample_queue_t *sq, isc_uint32_t t)
{
isc_int32_t delta;
isc_int32_t delta2;
isc_int32_t delta3;
/*
* If the time counter has overflowed, calculate the real difference.
* If it has not, it is simplier.
*/
if (t < sq->last_time)
delta = UINT_MAX - sq->last_time + t;
else
delta = sq->last_time - t;
if (delta < 0)
delta = -delta;
/*
* Calculate the second and third order differentials
*/
delta2 = sq->last_delta - delta;
if (delta2 < 0)
delta2 = -delta2;
delta3 = sq->last_delta2 - delta2;
if (delta3 < 0)
delta3 = -delta3;
sq->last_time = t;
sq->last_delta = delta;
sq->last_delta2 = delta2;
/*
* If any delta is 0, we got no entropy. If all are non-zero, we
* might have something.
*/
if (delta == 0 || delta2 == 0 || delta3 == 0)
return 0;
/*
* We could find the smallest delta and claim we got log2(delta)
* bits, but for now return that we found 1 bit.
*/
return 1;
}
static unsigned int
crunchsamples(isc_entropy_t *ent, sample_queue_t *sq) {
unsigned int ns;
unsigned int added;
if (sq->nsamples < 6)
return (0);
added = 0;
sq->last_time = sq->samples[0];
sq->last_delta = 0;
sq->last_delta2 = 0;
/*
* Prime the values by adding in the first 4 samples in. This
* should completely initialize the delta calculations.
*/
for (ns = 0 ; ns < 4 ; ns++)
(void)estimate_entropy(sq, sq->samples[ns]);
for (ns = 4 ; ns < sq->nsamples ; ns++)
added += estimate_entropy(sq, sq->samples[ns]);
entropypool_adddata(ent, sq->samples, sq->nsamples * 4, added);
entropypool_adddata(ent, sq->extra, sq->nsamples * 4, 0);
/*
* Move the last 4 samples into the first 4 positions, and start
* adding new samples from that point.
*/
for (ns = 0 ; ns < 4 ; ns++) {
sq->samples[ns] = sq->samples[sq->nsamples - 4 + ns];
sq->extra[ns] = sq->extra[sq->nsamples - 4 + ns];
}
sq->nsamples = 4;
return (added);
}
/*
* Add a sample, and return ISC_R_SUCCESS if the queue has become full,
* ISC_R_NOENTROPY if it has space remaining, and ISC_R_NOMORE if the
* queue was full when this function was called.
*/
static isc_result_t
addsample(sample_queue_t *sq, isc_uint32_t sample, isc_uint32_t extra) {
if (sq->nsamples >= RND_EVENTQSIZE)
return (ISC_R_NOMORE);
sq->samples[sq->nsamples] = sample;
sq->extra[sq->nsamples] = extra;
sq->nsamples++;
if (sq->nsamples >= RND_EVENTQSIZE)
return (ISC_R_QUEUEFULL);
return (ISC_R_SUCCESS);
}
isc_result_t
isc_entropy_addsample(isc_entropysource_t *source, isc_uint32_t sample,
isc_uint32_t extra)
{
isc_entropy_t *ent;
sample_queue_t *sq;
unsigned int entropy;
isc_result_t result;
REQUIRE(VALID_SOURCE(source));
ent = source->ent;
LOCK(&ent->lock);
sq = &source->sources.sample.samplequeue;
result = addsample(sq, sample, extra);
if (result == ISC_R_QUEUEFULL) {
entropy = crunchsamples(ent, sq);
add_entropy(ent, entropy);
}
UNLOCK(&ent->lock);
return (result);
}
isc_result_t
isc_entropy_addcallbacksample(isc_entropysource_t *source, isc_uint32_t sample,
isc_uint32_t extra)
{
sample_queue_t *sq;
isc_result_t result;
REQUIRE(VALID_SOURCE(source));
REQUIRE(source->type == ENTROPY_SOURCETYPE_CALLBACK);
sq = &source->sources.callback.samplequeue;
result = addsample(sq, sample, extra);
return (result);
}
void
isc_entropy_putdata(isc_entropy_t *ent, void *data, unsigned int length,
isc_uint32_t entropy)
{
REQUIRE(VALID_ENTROPY(ent));
LOCK(&ent->lock);
entropypool_adddata(ent, data, length, entropy);
if (ent->initialized < THRESHOLD_BITS)
ent->initialized = THRESHOLD_BITS;
UNLOCK(&ent->lock);
}
static void
dumpstats(isc_entropy_t *ent, FILE *out) {
fprintf(out,
isc_msgcat_get(isc_msgcat, ISC_MSGSET_ENTROPY,
ISC_MSG_ENTROPYSTATS,
"Entropy pool %p: refcnt %u cursor %u,"
" rotate %u entropy %u pseudo %u nsources %u"
" nextsource %p initialized %u initcount %u\n"),
ent, ent->refcnt,
ent->pool.cursor, ent->pool.rotate,
ent->pool.entropy, ent->pool.pseudo,
ent->nsources, ent->nextsource, ent->initialized,
ent->initcount);
}
/*
* This function ignores locking. Use at your own risk.
*/
void
isc_entropy_stats(isc_entropy_t *ent, FILE *out) {
REQUIRE(VALID_ENTROPY(ent));
LOCK(&ent->lock);
dumpstats(ent, out);
UNLOCK(&ent->lock);
}
void
isc_entropy_attach(isc_entropy_t *ent, isc_entropy_t **entp) {
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(entp != NULL && *entp == NULL);
LOCK(&ent->lock);
ent->refcnt++;
*entp = ent;
UNLOCK(&ent->lock);
}
void
isc_entropy_detach(isc_entropy_t **entp) {
isc_entropy_t *ent;
isc_boolean_t killit;
REQUIRE(entp != NULL && VALID_ENTROPY(*entp));
ent = *entp;
*entp = NULL;
LOCK(&ent->lock);
REQUIRE(ent->refcnt > 0);
ent->refcnt--;
killit = destroy_check(ent);
UNLOCK(&ent->lock);
if (killit)
destroy(&ent);
}