entropy.c revision 9c3531d72aeaad6c5f01efe6a1c82023e1379e4d
/*
* Copyright (C) 2000 Internet Software Consortium.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM DISCLAIMS
* ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE
* CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.
*/
/* $Id: entropy.c,v 1.42 2000/06/22 21:58:32 tale Exp $ */
#include <config.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <isc/buffer.h>
#include <isc/entropy.h>
#include <isc/list.h>
#include <isc/magic.h>
#include <isc/mem.h>
#include <isc/mutex.h>
#include <isc/region.h>
#include <isc/sha1.h>
#include <isc/string.h>
#include <isc/time.h>
#include <isc/util.h>
/*
* Much of this code is modeled after the NetBSD /dev/random implementation,
* written by Michael Graff <explorer@netbsd.org>.
*/
#define ENTROPY_MAGIC ISC_MAGIC('E', 'n', 't', 'e')
#define SOURCE_MAGIC ISC_MAGIC('E', 'n', 't', 's')
#define VALID_ENTROPY(e) ISC_MAGIC_VALID(e, ENTROPY_MAGIC)
#define VALID_SOURCE(s) ISC_MAGIC_VALID(s, SOURCE_MAGIC)
/***
*** "constants." Do not change these unless you _really_ know what
*** you are doing.
***/
/*
* size of entropy pool in 32-bit words. This _MUST_ be a power of 2.
*/
#define RND_POOLWORDS 128
#define RND_POOLBITS (RND_POOLWORDS * 32)
/*
* Number of bytes returned per hash. This must be true:
* threshold * 2 <= digest_size_in_bytes
*/
#define RND_ENTROPY_THRESHOLD 10
#define THRESHOLD_BITS (RND_ENTROPY_THRESHOLD * 8)
/*
* Size of the input event queue in samples.
*/
#define RND_EVENTQSIZE 32
/*
* The number of times we'll "reseed" for pseudorandom seeds. This is an
* extremely weak pseudorandom seed. If the caller is using lots of
* pseudorandom data and they cannot provide a stronger random source,
* there is little we can do other than hope they're smart enough to
* call _adddata() with something better than we can come up with.
*/
#define RND_INITIALIZE 128
typedef struct {
isc_uint32_t magic;
isc_uint32_t cursor; /* current add point in the pool */
isc_uint32_t entropy; /* current entropy estimate in bits */
isc_uint32_t pseudo; /* bits extracted in pseudorandom */
isc_uint32_t rotate; /* how many bits to rotate by */
isc_uint32_t pool[RND_POOLWORDS]; /* random pool data */
} isc_entropypool_t;
struct isc_entropy {
isc_uint32_t magic;
isc_mem_t *mctx;
isc_mutex_t lock;
unsigned int refcnt;
isc_uint32_t initialized;
isc_uint32_t initcount;
isc_entropypool_t pool;
unsigned int nsources;
isc_entropysource_t *nextsource;
ISC_LIST(isc_entropysource_t) sources;
};
typedef struct {
isc_uint32_t last_time; /* last time recorded */
isc_uint32_t last_delta; /* last delta value */
isc_uint32_t last_delta2; /* last delta2 value */
isc_uint32_t nsamples; /* number of samples filled in */
isc_uint32_t *samples; /* the samples */
isc_uint32_t *extra; /* extra samples added in */
} sample_queue_t;
typedef struct {
sample_queue_t samplequeue;
} isc_entropysamplesource_t;
typedef struct {
isc_boolean_t start_called;
isc_entropystart_t startfunc;
isc_entropyget_t getfunc;
isc_entropystop_t stopfunc;
void *arg;
sample_queue_t samplequeue;
} isc_cbsource_t;
typedef struct {
int fd; /* fd for the file, or -1 if closed */
} isc_entropyfilesource_t;
struct isc_entropysource {
isc_uint32_t magic;
unsigned int type;
isc_entropy_t *ent;
isc_uint32_t total; /* entropy from this source */
ISC_LINK(isc_entropysource_t) link;
char name[32];
union {
isc_entropysamplesource_t sample;
isc_entropyfilesource_t file;
isc_cbsource_t callback;
} sources;
};
#define ENTROPY_SOURCETYPE_SAMPLE 1 /* Type is a sample source */
#define ENTROPY_SOURCETYPE_FILE 2 /* Type is a file source */
#define ENTROPY_SOURCETYPE_CALLBACK 3 /* Type is a callback source */
/*
* The random pool "taps"
*/
#define TAP1 99
#define TAP2 59
#define TAP3 31
#define TAP4 9
#define TAP5 7
static inline void
entropypool_add_word(isc_entropypool_t *, isc_uint32_t);
static void
fillpool(isc_entropy_t *, unsigned int, isc_boolean_t);
static int
wait_for_sources(isc_entropy_t *);
static unsigned int
crunchsamples(isc_entropy_t *, sample_queue_t *sq);
static inline void
reseed(isc_entropy_t *ent);
static void
samplequeue_release(isc_entropy_t *ent, sample_queue_t *sq) {
REQUIRE(sq->samples != NULL);
REQUIRE(sq->extra != NULL);
isc_mem_put(ent->mctx, sq->samples, RND_EVENTQSIZE * 4);
isc_mem_put(ent->mctx, sq->extra, RND_EVENTQSIZE * 4);
sq->samples = NULL;
sq->extra = NULL;
}
static isc_result_t
samplesource_allocate(isc_entropy_t *ent, sample_queue_t *sq) {
sq->samples = isc_mem_get(ent->mctx, RND_EVENTQSIZE * 4);
if (sq->samples == NULL)
return (ISC_R_NOMEMORY);
sq->extra = isc_mem_get(ent->mctx, RND_EVENTQSIZE * 4);
if (sq->extra == NULL) {
isc_mem_put(ent->mctx, sq->samples, RND_EVENTQSIZE * 4);
sq->samples = NULL;
return (ISC_R_NOMEMORY);
}
sq->nsamples = 0;
return (ISC_R_SUCCESS);
}
/*
* Add in entropy, even when the value we're adding in could be
* very large.
*/
static inline void
add_entropy(isc_entropy_t *ent, isc_uint32_t entropy) {
/* clamp input. Yes, this must be done. */
entropy = ISC_MIN(entropy, RND_POOLBITS);
/* Add in the entropy we already have. */
entropy += ent->pool.entropy;
/* Clamp. */
ent->pool.entropy = ISC_MIN(entropy, RND_POOLBITS);
}
/*
* Decrement the amount of entropy the pool has.
*/
static inline void
subtract_entropy(isc_entropy_t *ent, isc_uint32_t entropy) {
entropy = ISC_MIN(entropy, ent->pool.entropy);
ent->pool.entropy -= entropy;
}
/*
* Add in entropy, even when the value we're adding in could be
* very large.
*/
static inline void
add_pseudo(isc_entropy_t *ent, isc_uint32_t pseudo) {
/* clamp input. Yes, this must be done. */
pseudo = ISC_MIN(pseudo, RND_POOLBITS * 8);
/* Add in the pseudo we already have. */
pseudo += ent->pool.pseudo;
/* Clamp. */
ent->pool.pseudo = ISC_MIN(pseudo, RND_POOLBITS * 8);
}
/*
* Decrement the amount of pseudo the pool has.
*/
static inline void
subtract_pseudo(isc_entropy_t *ent, isc_uint32_t pseudo) {
pseudo = ISC_MIN(pseudo, ent->pool.pseudo);
ent->pool.pseudo -= pseudo;
}
/*
* Add one word to the pool, rotating the input as needed.
*/
static inline void
entropypool_add_word(isc_entropypool_t *rp, isc_uint32_t val) {
/*
* Steal some values out of the pool, and xor them into the
* word we were given.
*
* Mix the new value into the pool using xor. This will
* prevent the actual values from being known to the caller
* since the previous values are assumed to be unknown as well.
*/
val ^= rp->pool[(rp->cursor + TAP1) & (RND_POOLWORDS - 1)];
val ^= rp->pool[(rp->cursor + TAP2) & (RND_POOLWORDS - 1)];
val ^= rp->pool[(rp->cursor + TAP3) & (RND_POOLWORDS - 1)];
val ^= rp->pool[(rp->cursor + TAP4) & (RND_POOLWORDS - 1)];
val ^= rp->pool[(rp->cursor + TAP5) & (RND_POOLWORDS - 1)];
rp->pool[rp->cursor++] ^=
((val << rp->rotate) | (val >> (32 - rp->rotate)));
/*
* If we have looped around the pool, increment the rotate
* variable so the next value will get xored in rotated to
* a different position.
* Increment by a value that is relativly prime to the word size
* to try to spread the bits throughout the pool quickly when the
* pool is empty.
*/
if (rp->cursor == RND_POOLWORDS) {
rp->cursor = 0;
rp->rotate = (rp->rotate + 7) & 31;
}
}
/*
* Add a buffer's worth of data to the pool.
*
* Requires that the lock is held on the entropy pool.
*/
static void
entropypool_adddata(isc_entropy_t *ent, void *p, unsigned int len,
isc_uint32_t entropy)
{
isc_uint32_t val;
isc_uint32_t addr;
isc_uint8_t *buf;
addr = (isc_uint32_t)p;
buf = p;
if ((addr & 0x03) != 0) {
val = 0;
switch (len) {
case 3:
val = *buf++;
len--;
case 2:
val = val << 8 | *buf++;
len--;
case 1:
val = val << 8 | *buf++;
len--;
}
entropypool_add_word(&ent->pool, val);
}
for (; len > 3 ; len -= 4) {
val = *((isc_uint32_t *)buf);
entropypool_add_word(&ent->pool, val);
buf += 4;
}
if (len != 0) {
val = 0;
switch (len) {
case 3:
val = *buf++;
case 2:
val = val << 8 | *buf++;
case 1:
val = val << 8 | *buf++;
}
entropypool_add_word(&ent->pool, val);
}
add_entropy(ent, entropy);
subtract_pseudo(ent, entropy);
}
static inline void
reseed(isc_entropy_t *ent) {
isc_result_t result;
isc_time_t t;
pid_t pid;
if (ent->initcount == 0) {
pid = getpid();
entropypool_adddata(ent, &pid, sizeof pid, 0);
pid = getppid();
entropypool_adddata(ent, &pid, sizeof pid, 0);
}
/*
* After we've reseeded 100 times, only add new timing info every
* 50 requests. This will keep us from using lots and lots of
* CPU just to return bad pseudorandom data anyway.
*/
if (ent->initcount > 100)
if ((ent->initcount % 50) != 0)
return;
result = isc_time_now(&t);
if (result == ISC_R_SUCCESS) {
entropypool_adddata(ent, &t, sizeof t, 0);
ent->initcount++;
}
}
static unsigned int
get_from_filesource(isc_entropysource_t *source, isc_uint32_t desired) {
isc_entropy_t *ent = source->ent;
unsigned char buf[128];
int fd = source->sources.file.fd;
ssize_t n, ndesired;
unsigned int added;
if (fd == -1)
return (0);
desired = desired / 8 + (((desired & 0x07) > 0) ? 1 : 0);
added = 0;
while (desired > 0) {
ndesired = ISC_MIN(desired, sizeof(buf));
n = read(fd, buf, ndesired);
if (n < 0) {
if (errno == EAGAIN)
goto out;
close(fd);
source->sources.file.fd = -1;
goto out;
}
if (n == 0) {
close(fd);
source->sources.file.fd = -1;
goto out;
}
entropypool_adddata(ent, buf, n, n * 8);
added += n * 8;
desired -= n;
}
out:
return (added);
}
static unsigned int
get_from_callback(isc_entropysource_t *source, unsigned int desired,
isc_boolean_t blocking)
{
isc_entropy_t *ent = source->ent;
isc_cbsource_t *cbs = &source->sources.callback;
unsigned int added;
unsigned int got;
isc_result_t result;
if (desired == 0)
return (0);
if (!cbs->start_called && cbs->startfunc != NULL) {
result = cbs->startfunc(source, cbs->arg, blocking);
if (result != ISC_R_SUCCESS)
return (0);
cbs->start_called = ISC_TRUE;
}
added = 0;
result = ISC_R_SUCCESS;
while (desired > 0 && result == ISC_R_SUCCESS) {
result = cbs->getfunc(source, cbs->arg, blocking);
if (result == ISC_R_QUEUEFULL) {
got = crunchsamples(ent, &cbs->samplequeue);
added += got;
desired -= ISC_MIN(got, desired);
result = ISC_R_SUCCESS;
}
}
return (added);
}
/*
* Poll each source, trying to get data from it to stuff into the entropy
* pool.
*/
static void
fillpool(isc_entropy_t *ent, unsigned int desired, isc_boolean_t blocking) {
unsigned int added;
unsigned int remaining;
unsigned int needed;
unsigned int nsource;
isc_entropysource_t *source;
REQUIRE(VALID_ENTROPY(ent));
needed = desired;
/*
* This logic is a little strange, so an explanation is in order.
*
* If needed is 0, it means we are being asked to "fill to whatever
* we think is best." This means that if we have at least a
* partially full pool (say, > 1/4th of the pool) we probably don't
* need to add anything.
*
* Also, we will check to see if the "pseudo" count is too high.
* If it is, try to mix in better data. Too high is currently
* defined as 1/4th of the pool.
*
* Next, if we are asked to add a specific bit of entropy, make
* certain that we will do so. Clamp how much we try to add to
* (DIGEST_SIZE * 8 < needed < POOLBITS - entropy).
*
* Note that if we are in a blocking mode, we will only try to
* get as much data as we need, not as much as we might want
* to build up.
*/
if (needed == 0) {
REQUIRE(!blocking);
if ((ent->pool.entropy >= RND_POOLBITS / 4)
&& (ent->pool.pseudo <= RND_POOLBITS / 4))
return;
needed = THRESHOLD_BITS * 4;
} else {
needed = ISC_MAX(needed, THRESHOLD_BITS);
needed = ISC_MIN(needed, RND_POOLBITS);
}
/*
* In any case, clamp how much we need to how much we can add.
*/
needed = ISC_MIN(needed, RND_POOLBITS - ent->pool.entropy);
/*
* But wait! If we're not yet initialized, we need at least
* THRESHOLD_BITS
* of randomness.
*/
if (ent->initialized < THRESHOLD_BITS)
needed = ISC_MAX(needed, THRESHOLD_BITS - ent->initialized);
/*
* Poll each file source to see if we can read anything useful from
* it. XXXMLG When where are multiple sources, we should keep a
* record of which one we last used so we can start from it (or the
* next one) to avoid letting some sources build up entropy while
* others are always drained.
*/
added = 0;
remaining = needed;
if (ent->nextsource == NULL) {
ent->nextsource = ISC_LIST_HEAD(ent->sources);
if (ent->nextsource == NULL)
return;
}
source = ent->nextsource;
again_file:
for (nsource = 0 ; nsource < ent->nsources ; nsource++) {
unsigned int got;
if (remaining == 0)
break;
got = 0;
if (source->type == ENTROPY_SOURCETYPE_FILE)
got = get_from_filesource(source, remaining);
added += got;
remaining -= ISC_MIN(remaining, got);
source = ISC_LIST_NEXT(source, link);
if (source == NULL)
source = ISC_LIST_HEAD(ent->sources);
#if 0
if (added >= needed)
break;
#endif
}
ent->nextsource = source;
if (blocking && remaining != 0) {
int fds;
fds = wait_for_sources(ent);
if (fds > 0)
goto again_file;
}
/*
* Here, if there are bits remaining to be had and we can block,
* check to see if we have a callback source. If so, call them.
*/
source = ISC_LIST_HEAD(ent->sources);
while ((remaining != 0) && (source != NULL)) {
unsigned int got;
got = 0;
if (source->type == ENTROPY_SOURCETYPE_CALLBACK)
got = get_from_callback(source, remaining, blocking);
added += got;
remaining -= ISC_MIN(remaining, got);
if (added >= needed)
break;
source = ISC_LIST_NEXT(source, link);
}
/*
* Mark as initialized if we've added enough data.
*/
if (ent->initialized < THRESHOLD_BITS)
ent->initialized += added;
}
static int
wait_for_sources(isc_entropy_t *ent) {
isc_entropysource_t *source;
int maxfd, fd;
int cc;
fd_set reads;
maxfd = -1;
FD_ZERO(&reads);
source = ISC_LIST_HEAD(ent->sources);
while (source != NULL) {
if (source->type == ENTROPY_SOURCETYPE_FILE) {
fd = source->sources.file.fd;
if (fd >= 0) {
maxfd = ISC_MAX(maxfd, fd);
FD_SET(fd, &reads);
}
}
source = ISC_LIST_NEXT(source, link);
}
if (maxfd < 0)
return (-1);
cc = select(maxfd + 1, &reads, NULL, NULL, NULL);
if (cc < 0)
return (-1);
return (cc);
}
/*
* Extract some number of bytes from the random pool, decreasing the
* estimate of randomness as each byte is extracted.
*
* Do this by stiring the pool and returning a part of hash as randomness.
* Note that no secrets are given away here since parts of the hash are
* xored together before returned.
*
* Honor the request from the caller to only return good data, any data,
* etc.
*/
isc_result_t
isc_entropy_getdata(isc_entropy_t *ent, void *data, unsigned int length,
unsigned int *returned, unsigned int flags)
{
unsigned int i;
isc_sha1_t hash;
unsigned char digest[ISC_SHA1_DIGESTLENGTH];
isc_uint32_t remain, deltae, count, total;
isc_uint8_t *buf;
isc_boolean_t goodonly, partial, blocking;
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(data != NULL);
REQUIRE(length > 0);
goodonly = ISC_TF((flags & ISC_ENTROPY_GOODONLY) != 0);
partial = ISC_TF((flags & ISC_ENTROPY_PARTIAL) != 0);
blocking = ISC_TF((flags & ISC_ENTROPY_BLOCKING) != 0);
LOCK(&ent->lock);
remain = length;
buf = data;
total = 0;
while (remain != 0) {
count = ISC_MIN(remain, RND_ENTROPY_THRESHOLD);
/*
* If we are extracting good data only, make certain we
* have enough data in our pool for this pass. If we don't,
* get some, and fail if we can't, and partial returns
* are not ok.
*/
if (goodonly) {
unsigned int fillcount;
fillcount = ISC_MAX(remain * 8, count * 8);
/*
* If, however, we have at least THRESHOLD_BITS
* of entropy in the pool, don't block here. It is
* better to drain the pool once in a while and
* then refill it than it is to constantly keep the
* pool full.
*/
if (ent->pool.entropy >= THRESHOLD_BITS)
fillpool(ent, fillcount, ISC_FALSE);
else
fillpool(ent, fillcount, blocking);
if (ent->pool.entropy < THRESHOLD_BITS) {
if (!blocking && !partial)
goto zeroize;
else if (partial)
goto partial_output;
}
} else {
/*
* If we've extracted half our pool size in bits
* since the last refresh, try to refresh here.
*/
if (ent->initialized < THRESHOLD_BITS)
fillpool(ent, THRESHOLD_BITS, blocking);
else
fillpool(ent, 0, ISC_FALSE);
/*
* If we've not initialized with enough good random
* data, seed with our crappy code.
*/
if (ent->initialized < THRESHOLD_BITS)
reseed(ent);
}
isc_sha1_init(&hash);
isc_sha1_update(&hash, (void *)(ent->pool.pool),
RND_POOLWORDS * 4);
isc_sha1_final(&hash, digest);
/*
* Stir the extracted data (all of it) back into the pool.
*/
entropypool_adddata(ent, digest, ISC_SHA1_DIGESTLENGTH, 0);
for (i = 0; i < count; i++)
buf[i] = digest[i] ^ digest[i + RND_ENTROPY_THRESHOLD];
buf += count;
remain -= count;
deltae = count * 8;
deltae = ISC_MIN(deltae, ent->pool.entropy);
total += deltae;
subtract_entropy(ent, deltae);
add_pseudo(ent, count * 8);
}
partial_output:
memset(digest, 0, sizeof(digest));
if (returned != NULL)
*returned = (length - remain);
UNLOCK(&ent->lock);
return (ISC_R_SUCCESS);
zeroize:
/* put the entropy we almost extracted back */
add_entropy(ent, total);
memset(data, 0, length);
memset(digest, 0, sizeof(digest));
if (returned != NULL)
*returned = 0;
UNLOCK(&ent->lock);
return (ISC_R_NOENTROPY);
}
static void
isc_entropypool_init(isc_entropypool_t *pool) {
pool->cursor = RND_POOLWORDS - 1;
pool->entropy = 0;
pool->pseudo = 0;
pool->rotate = 0;
memset(pool->pool, 0, RND_POOLWORDS);
}
static void
isc_entropypool_invalidate(isc_entropypool_t *pool) {
pool->cursor = 0;
pool->entropy = 0;
pool->pseudo = 0;
pool->rotate = 0;
memset(pool->pool, 0, RND_POOLWORDS);
}
isc_result_t
isc_entropy_create(isc_mem_t *mctx, isc_entropy_t **entp) {
isc_result_t ret;
isc_entropy_t *ent;
REQUIRE(mctx != NULL);
REQUIRE(entp != NULL && *entp == NULL);
ent = isc_mem_get(mctx, sizeof(isc_entropy_t));
if (ent == NULL)
return (ISC_R_NOMEMORY);
/*
* We need a lock.
*/
if (isc_mutex_init(&ent->lock) != ISC_R_SUCCESS) {
ret = ISC_R_UNEXPECTED;
goto errout;
}
/*
* From here down, no failures will/can occur.
*/
ISC_LIST_INIT(ent->sources);
ent->nextsource = NULL;
ent->nsources = 0;
ent->mctx = NULL;
isc_mem_attach(mctx, &ent->mctx);
ent->refcnt = 1;
ent->initialized = 0;
ent->initcount = 0;
ent->magic = ENTROPY_MAGIC;
isc_entropypool_init(&ent->pool);
*entp = ent;
return (ISC_R_SUCCESS);
errout:
isc_mem_put(mctx, ent, sizeof(isc_entropy_t));
return (ret);
}
/*
* Requires "ent" be locked.
*/
static void
destroysource(isc_entropysource_t **sourcep) {
isc_entropysource_t *source;
isc_entropy_t *ent;
isc_cbsource_t *cbs;
int fd;
source = *sourcep;
*sourcep = NULL;
ent = source->ent;
ISC_LIST_UNLINK(ent->sources, source, link);
ent->nextsource = NULL;
REQUIRE(ent->nsources > 0);
ent->nsources--;
switch (source->type) {
case ENTROPY_SOURCETYPE_FILE:
fd = source->sources.file.fd;
if (fd >= 0)
close(fd);
break;
case ENTROPY_SOURCETYPE_SAMPLE:
samplequeue_release(ent, &source->sources.sample.samplequeue);
break;
case ENTROPY_SOURCETYPE_CALLBACK:
cbs = &source->sources.callback;
if (cbs->start_called && cbs->stopfunc != NULL) {
cbs->stopfunc(source, cbs->arg);
cbs->start_called = ISC_FALSE;
}
samplequeue_release(ent, &cbs->samplequeue);
break;
}
memset(source, 0, sizeof(isc_entropysource_t));
isc_mem_put(ent->mctx, source, sizeof(isc_entropysource_t));
}
static inline isc_boolean_t
destroy_check(isc_entropy_t *ent) {
isc_entropysource_t *source;
if (ent->refcnt > 0)
return (ISC_FALSE);
source = ISC_LIST_HEAD(ent->sources);
while (source != NULL) {
switch (source->type) {
case ENTROPY_SOURCETYPE_FILE:
break;
default:
return (ISC_FALSE);
}
source = ISC_LIST_NEXT(source, link);
}
return (ISC_TRUE);
}
static void
destroy(isc_entropy_t **entp) {
isc_entropy_t *ent;
isc_entropysource_t *source;
isc_mem_t *mctx;
REQUIRE(entp != NULL && *entp != NULL);
ent = *entp;
*entp = NULL;
LOCK(&ent->lock);
REQUIRE(ent->refcnt == 0);
/*
* Here, detach non-sample sources.
*/
source = ISC_LIST_HEAD(ent->sources);
while (source != NULL) {
switch(source->type) {
case ENTROPY_SOURCETYPE_FILE:
destroysource(&source);
break;
}
source = ISC_LIST_HEAD(ent->sources);
}
/*
* If there are other types of sources, we've found a bug.
*/
REQUIRE(ISC_LIST_EMPTY(ent->sources));
mctx = ent->mctx;
isc_entropypool_invalidate(&ent->pool);
UNLOCK(&ent->lock);
isc_mutex_destroy(&ent->lock);
memset(ent, 0, sizeof(isc_entropy_t));
isc_mem_put(mctx, ent, sizeof(isc_entropy_t));
isc_mem_detach(&mctx);
}
/*
* Make a fd non-blocking
*/
static isc_result_t
make_nonblock(int fd) {
int ret;
int flags;
flags = fcntl(fd, F_GETFL, 0);
flags |= O_NONBLOCK;
ret = fcntl(fd, F_SETFL, flags);
if (ret == -1) {
UNEXPECTED_ERROR(__FILE__, __LINE__,
"fcntl(%d, F_SETFL, %d): %s",
fd, flags, strerror(errno));
return (ISC_R_UNEXPECTED);
}
return (ISC_R_SUCCESS);
}
isc_result_t
isc_entropy_createfilesource(isc_entropy_t *ent, const char *fname) {
int fd;
isc_result_t ret;
isc_entropysource_t *source;
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(fname != NULL);
LOCK(&ent->lock);
source = NULL;
fd = -1;
fd = open(fname, O_RDONLY | O_NONBLOCK, 0);
if (fd < 0) {
ret = ISC_R_IOERROR;
goto errout;
}
ret = make_nonblock(fd);
if (ret != ISC_R_SUCCESS)
goto errout;
source = isc_mem_get(ent->mctx, sizeof(isc_entropysource_t));
if (source == NULL) {
ret = ISC_R_NOMEMORY;
goto errout;
}
/*
* From here down, no failures can occur.
*/
source->magic = SOURCE_MAGIC;
source->type = ENTROPY_SOURCETYPE_FILE;
source->ent = ent;
source->total = 0;
memset(source->name, 0, sizeof(source->name));
ISC_LINK_INIT(source, link);
source->sources.file.fd = fd;
/*
* Hook it into the entropy system.
*/
ISC_LIST_APPEND(ent->sources, source, link);
ent->nsources++;
UNLOCK(&ent->lock);
return (ISC_R_SUCCESS);
errout:
if (source != NULL)
isc_mem_put(ent->mctx, source, sizeof(isc_entropysource_t));
if (fd >= 0)
close(fd);
UNLOCK(&ent->lock);
return (ret);
}
void
isc_entropy_destroysource(isc_entropysource_t **sourcep) {
isc_entropysource_t *source;
isc_entropy_t *ent;
isc_boolean_t killit;
REQUIRE(sourcep != NULL);
REQUIRE(VALID_SOURCE(*sourcep));
source = *sourcep;
*sourcep = NULL;
ent = source->ent;
REQUIRE(VALID_ENTROPY(ent));
LOCK(&ent->lock);
destroysource(&source);
killit = destroy_check(ent);
UNLOCK(&ent->lock);
if (killit)
destroy(&ent);
}
isc_result_t
isc_entropy_createcallbacksource(isc_entropy_t *ent,
isc_entropystart_t start,
isc_entropyget_t get,
isc_entropystop_t stop,
void *arg,
isc_entropysource_t **sourcep)
{
isc_result_t ret;
isc_entropysource_t *source;
isc_cbsource_t *cbs;
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(get != NULL);
REQUIRE(sourcep != NULL && *sourcep == NULL);
LOCK(&ent->lock);
source = isc_mem_get(ent->mctx, sizeof(isc_entropysource_t));
if (source == NULL) {
ret = ISC_R_NOMEMORY;
goto errout;
}
cbs = &source->sources.callback;
ret = samplesource_allocate(ent, &cbs->samplequeue);
if (ret != ISC_R_SUCCESS)
goto errout;
cbs->start_called = ISC_FALSE;
cbs->startfunc = start;
cbs->getfunc = get;
cbs->stopfunc = stop;
cbs->arg = arg;
/*
* From here down, no failures can occur.
*/
source->magic = SOURCE_MAGIC;
source->type = ENTROPY_SOURCETYPE_CALLBACK;
source->ent = ent;
source->total = 0;
memset(source->name, 0, sizeof(source->name));
ISC_LINK_INIT(source, link);
/*
* Hook it into the entropy system.
*/
ISC_LIST_APPEND(ent->sources, source, link);
ent->nsources++;
*sourcep = source;
UNLOCK(&ent->lock);
return (ISC_R_SUCCESS);
errout:
if (source != NULL)
isc_mem_put(ent->mctx, source, sizeof(isc_entropysource_t));
UNLOCK(&ent->lock);
return (ret);
}
void
isc_entropy_stopcallbacksources(isc_entropy_t *ent) {
isc_entropysource_t *source;
isc_cbsource_t *cbs;
REQUIRE(VALID_ENTROPY(ent));
LOCK(&ent->lock);
source = ISC_LIST_HEAD(ent->sources);
while (source != NULL) {
if (source->type == ENTROPY_SOURCETYPE_CALLBACK) {
cbs = &source->sources.callback;
if (cbs->start_called && cbs->stopfunc != NULL) {
cbs->stopfunc(source, cbs->arg);
cbs->start_called = ISC_FALSE;
}
}
source = ISC_LIST_NEXT(source, link);
}
UNLOCK(&ent->lock);
}
isc_result_t
isc_entropy_createsamplesource(isc_entropy_t *ent,
isc_entropysource_t **sourcep)
{
isc_result_t ret;
isc_entropysource_t *source;
sample_queue_t *sq;
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(sourcep != NULL && *sourcep == NULL);
LOCK(&ent->lock);
source = isc_mem_get(ent->mctx, sizeof(isc_entropysource_t));
if (source == NULL) {
ret = ISC_R_NOMEMORY;
goto errout;
}
sq = &source->sources.sample.samplequeue;
ret = samplesource_allocate(ent, sq);
if (ret != ISC_R_SUCCESS)
goto errout;
/*
* From here down, no failures can occur.
*/
source->magic = SOURCE_MAGIC;
source->type = ENTROPY_SOURCETYPE_SAMPLE;
source->ent = ent;
source->total = 0;
memset(source->name, 0, sizeof(source->name));
ISC_LINK_INIT(source, link);
/*
* Hook it into the entropy system.
*/
ISC_LIST_APPEND(ent->sources, source, link);
ent->nsources++;
*sourcep = source;
UNLOCK(&ent->lock);
return (ISC_R_SUCCESS);
errout:
if (source != NULL)
isc_mem_put(ent->mctx, source, sizeof(isc_entropysource_t));
UNLOCK(&ent->lock);
return (ret);
}
static inline unsigned int
estimate_entropy(sample_queue_t *sq, isc_uint32_t t)
{
isc_int32_t delta;
isc_int32_t delta2;
isc_int32_t delta3;
/*
* If the time counter has overflowed, calculate the real difference.
* If it has not, it is simplier.
*/
if (t < sq->last_time)
delta = UINT_MAX - sq->last_time + t;
else
delta = sq->last_time - t;
if (delta < 0)
delta = -delta;
/*
* Calculate the second and third order differentials
*/
delta2 = sq->last_delta - delta;
if (delta2 < 0)
delta2 = -delta2;
delta3 = sq->last_delta2 - delta2;
if (delta3 < 0)
delta3 = -delta3;
sq->last_time = t;
sq->last_delta = delta;
sq->last_delta2 = delta2;
/*
* If any delta is 0, we got no entropy. If all are non-zero, we
* might have something.
*/
if (delta == 0 || delta2 == 0 || delta3 == 0)
return 0;
/*
* We could find the smallest delta and claim we got log2(delta)
* bits, but for now return that we found 1 bit.
*/
return 1;
}
static unsigned int
crunchsamples(isc_entropy_t *ent, sample_queue_t *sq) {
unsigned int ns;
unsigned int added;
if (sq->nsamples < 6)
return (0);
added = 0;
sq->last_time = sq->samples[0];
sq->last_delta = 0;
sq->last_delta2 = 0;
/*
* Prime the values by adding in the first 4 samples in. This
* should completely initialize the delta calculations.
*/
for (ns = 0 ; ns < 4 ; ns++)
(void)estimate_entropy(sq, sq->samples[ns]);
for (ns = 4 ; ns < sq->nsamples ; ns++)
added += estimate_entropy(sq, sq->samples[ns]);
entropypool_adddata(ent, sq->samples, sq->nsamples * 4, added);
entropypool_adddata(ent, sq->extra, sq->nsamples * 4, 0);
/*
* Move the last 4 samples into the first 4 positions, and start
* adding new samples from that point.
*/
for (ns = 0 ; ns < 4 ; ns++) {
sq->samples[ns] = sq->samples[sq->nsamples - 4 + ns];
sq->extra[ns] = sq->extra[sq->nsamples - 4 + ns];
}
sq->nsamples = 0;
return (added);
}
/*
* Add a sample, and return ISC_R_SUCCESS if the queue has become full,
* ISC_R_NOENTROPY if it has space remaining, and ISC_R_NOMORE if the
* queue was full when this function was called.
*/
static isc_result_t
addsample(sample_queue_t *sq, isc_uint32_t sample, isc_uint32_t extra) {
if (sq->nsamples >= RND_EVENTQSIZE)
return (ISC_R_NOMORE);
sq->samples[sq->nsamples] = sample;
sq->extra[sq->nsamples] = extra;
sq->nsamples++;
if (sq->nsamples >= RND_EVENTQSIZE)
return (ISC_R_QUEUEFULL);
return (ISC_R_SUCCESS);
}
isc_result_t
isc_entropy_addsample(isc_entropysource_t *source, isc_uint32_t sample,
isc_uint32_t extra)
{
isc_entropy_t *ent;
sample_queue_t *sq;
unsigned int entropy;
isc_result_t result;
REQUIRE(VALID_SOURCE(source));
ent = source->ent;
LOCK(&ent->lock);
sq = &source->sources.sample.samplequeue;
result = addsample(sq, sample, extra);
if (result == ISC_R_QUEUEFULL) {
entropy = crunchsamples(ent, sq);
add_entropy(ent, entropy);
}
UNLOCK(&ent->lock);
return (result);
}
isc_result_t
isc_entropy_addcallbacksample(isc_entropysource_t *source, isc_uint32_t sample,
isc_uint32_t extra)
{
isc_entropy_t *ent;
sample_queue_t *sq;
isc_result_t result;
REQUIRE(VALID_SOURCE(source));
REQUIRE(source->type == ENTROPY_SOURCETYPE_CALLBACK);
ent = source->ent;
sq = &source->sources.callback.samplequeue;
result = addsample(sq, sample, extra);
return (result);
}
void
isc_entropy_putdata(isc_entropy_t *ent, void *data, unsigned int length,
isc_uint32_t entropy)
{
REQUIRE(VALID_ENTROPY(ent));
LOCK(&ent->lock);
entropypool_adddata(ent, data, length, entropy);
if (ent->initialized < THRESHOLD_BITS)
ent->initialized = THRESHOLD_BITS;
UNLOCK(&ent->lock);
}
static void
dumpstats(isc_entropy_t *ent, FILE *out) {
fprintf(out,
"Entropy pool %p: refcnt %u"
" cursor %u, rotate %u entropy %u pseudo %u nsources %u"
" nextsource %p initialized %u initcount %u\n",
ent, ent->refcnt,
ent->pool.cursor, ent->pool.rotate,
ent->pool.entropy, ent->pool.pseudo,
ent->nsources, ent->nextsource, ent->initialized,
ent->initcount);
}
/*
* This function ignores locking. Use at your own risk.
*/
void
isc_entropy_stats(isc_entropy_t *ent, FILE *out) {
REQUIRE(VALID_ENTROPY(ent));
LOCK(&ent->lock);
dumpstats(ent, out);
UNLOCK(&ent->lock);
}
void
isc_entropy_attach(isc_entropy_t *ent, isc_entropy_t **entp) {
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(entp != NULL && *entp == NULL);
LOCK(&ent->lock);
ent->refcnt++;
*entp = ent;
UNLOCK(&ent->lock);
}
void
isc_entropy_detach(isc_entropy_t **entp) {
isc_entropy_t *ent;
isc_boolean_t killit;
REQUIRE(entp != NULL && VALID_ENTROPY(*entp));
ent = *entp;
*entp = NULL;
LOCK(&ent->lock);
REQUIRE(ent->refcnt > 0);
ent->refcnt--;
killit = destroy_check(ent);
UNLOCK(&ent->lock);
if (killit)
destroy(&ent);
}