mem.c revision 499b34cea04a46823d003d4c0520c8b03e8513cb
/*
* Copyright (C) 1997-2001 Internet Software Consortium.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM
* DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
* INTERNET SOFTWARE CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
* FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
* WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* $Id: mem.c,v 1.78 2001/01/09 21:56:16 bwelling Exp $ */
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <limits.h>
#include <isc/mem.h>
#include <isc/msgs.h>
#include <isc/ondestroy.h>
#include <isc/string.h>
#include <isc/mutex.h>
#include <isc/util.h>
unsigned int isc_mem_debugging = 0;
/*
* Constants.
*/
#define DEF_MAX_SIZE 1100
#define DEF_MEM_TARGET 4096
#define ALIGNMENT_SIZE 8 /* must be a power of 2 */
#define NUM_BASIC_BLOCKS 64 /* must be > 1 */
#define TABLE_INCREMENT 1024
#define DEBUGLIST_COUNT 1024
/*
* Types.
*/
#if ISC_MEM_TRACKLINES
typedef struct debuglink debuglink_t;
struct debuglink {
ISC_LINK(debuglink_t) link;
const void *ptr[DEBUGLIST_COUNT];
const char *file[DEBUGLIST_COUNT];
unsigned int line[DEBUGLIST_COUNT];
unsigned int count;
};
#define FLARG_PASS , file, line
#define FLARG , const char *file, int line
#else
#define FLARG_PASS
#define FLARG
#endif
typedef struct element element;
struct element {
element * next;
};
typedef struct {
/*
* This structure must be ALIGNMENT_SIZE bytes.
*/
union {
size_t size;
char bytes[ALIGNMENT_SIZE];
} u;
} size_info;
struct stats {
unsigned long gets;
unsigned long totalgets;
unsigned long blocks;
unsigned long freefrags;
};
#define MEM_MAGIC 0x4D656d43U /* MemC. */
#define VALID_CONTEXT(c) ((c) != NULL && (c)->magic == MEM_MAGIC)
struct isc_mem {
unsigned int magic;
isc_ondestroy_t ondestroy;
isc_mutex_t lock;
isc_memalloc_t memalloc;
isc_memfree_t memfree;
void * arg;
size_t max_size;
size_t mem_target;
element ** freelists;
element * basic_blocks;
unsigned char ** basic_table;
unsigned int basic_table_count;
unsigned int basic_table_size;
unsigned char * lowest;
unsigned char * highest;
isc_boolean_t checkfree;
isc_boolean_t trysplit;
struct stats * stats;
unsigned int references;
size_t quota;
size_t total;
size_t inuse;
size_t hi_water;
size_t lo_water;
isc_boolean_t hi_called;
isc_mem_water_t water;
void * water_arg;
ISC_LIST(isc_mempool_t) pools;
#if ISC_MEM_TRACKLINES
ISC_LIST(debuglink_t) debuglist;
#endif
};
#define MEMPOOL_MAGIC 0x4D454d70U /* MEMp. */
#define VALID_MEMPOOL(c) ((c) != NULL && (c)->magic == MEMPOOL_MAGIC)
struct isc_mempool {
/* always unlocked */
unsigned int magic; /* magic number */
isc_mutex_t *lock; /* optional lock */
isc_mem_t *mctx; /* our memory context */
/* locked via the memory context's lock */
ISC_LINK(isc_mempool_t) link; /* next pool in this mem context */
/* optionally locked from here down */
element *items; /* low water item list */
size_t size; /* size of each item on this pool */
unsigned int maxalloc; /* max number of items allowed */
unsigned int allocated; /* # of items currently given out */
unsigned int freecount; /* # of items on reserved list */
unsigned int freemax; /* # of items allowed on free list */
unsigned int fillcount; /* # of items to fetch on each fill */
/* Stats only. */
unsigned int gets; /* # of requests to this pool */
/* Debugging only. */
#if ISC_MEMPOOL_NAMES
char name[16]; /* printed name in stats reports */
#endif
};
/*
* Private Inline-able.
*/
#if ! ISC_MEM_TRACKLINES
#define ADD_TRACE(a, b, c, d, e)
#define DELETE_TRACE(a, b, c, d, e)
#else
#define ADD_TRACE(a, b, c, d, e) add_trace_entry(a, b, c, d, e)
#define DELETE_TRACE(a, b, c, d, e) delete_trace_entry(a, b, c, d, e)
#define MEM_TRACE ((isc_mem_debugging & ISC_MEM_DEBUGTRACE) != 0)
#define MEM_RECORD ((isc_mem_debugging & ISC_MEM_DEBUGRECORD) != 0)
/*
* mctx must be locked.
*/
static inline void
add_trace_entry(isc_mem_t *mctx, const void *ptr, unsigned int size
FLARG)
{
debuglink_t *dl;
unsigned int i;
if (MEM_TRACE)
fprintf(stderr, isc_msgcat_get(isc_msgcat, ISC_MSGSET_MEM,
ISC_MSG_ADDTRACE,
"add %p size %u "
"file %s line %u mctx %p\n"),
ptr, size, file, line, mctx);
if (!MEM_RECORD)
return;
dl = ISC_LIST_HEAD(mctx->debuglist);
while (dl != NULL) {
if (dl->count == DEBUGLIST_COUNT)
goto next;
for (i = 0 ; i < DEBUGLIST_COUNT ; i++) {
if (dl->ptr[i] == NULL) {
dl->ptr[i] = ptr;
dl->file[i] = file;
dl->line[i] = line;
dl->count++;
return;
}
}
next:
dl = ISC_LIST_NEXT(dl, link);
}
dl = malloc(sizeof(debuglink_t));
INSIST(dl != NULL);
ISC_LINK_INIT(dl, link);
for (i = 1 ; i < DEBUGLIST_COUNT ; i++) {
dl->ptr[i] = NULL;
dl->file[i] = NULL;
dl->line[i] = 0;
}
dl->ptr[0] = ptr;
dl->file[0] = file;
dl->line[0] = line;
dl->count = 1;
ISC_LIST_PREPEND(mctx->debuglist, dl, link);
}
static inline void
delete_trace_entry(isc_mem_t *mctx, const void *ptr, unsigned int size,
const char *file, unsigned int line)
{
debuglink_t *dl;
unsigned int i;
if (MEM_TRACE)
fprintf(stderr, isc_msgcat_get(isc_msgcat, ISC_MSGSET_MEM,
ISC_MSG_DELTRACE,
"del %p size %u "
"file %s line %u mctx %p\n"),
ptr, size, file, line, mctx);
if (!MEM_RECORD)
return;
dl = ISC_LIST_HEAD(mctx->debuglist);
while (dl != NULL) {
for (i = 0 ; i < DEBUGLIST_COUNT ; i++) {
if (dl->ptr[i] == ptr) {
dl->ptr[i] = NULL;
dl->file[i] = NULL;
dl->line[i] = 0;
INSIST(dl->count > 0);
dl->count--;
if (dl->count == 0) {
ISC_LIST_UNLINK(mctx->debuglist,
dl, link);
free(dl);
}
return;
}
}
dl = ISC_LIST_NEXT(dl, link);
}
/*
* If we get here, we didn't find the item on the list. We're
* screwed.
*/
INSIST(dl != NULL);
}
#endif /* ISC_MEM_TRACKLINES */
static inline size_t
rmsize(size_t size) {
/*
* round down to ALIGNMENT_SIZE
*/
return (size & (~(ALIGNMENT_SIZE - 1)));
}
static inline size_t
quantize(size_t size) {
/*
* Round up the result in order to get a size big
* enough to satisfy the request and be aligned on ALIGNMENT_SIZE
* byte boundaries.
*/
if (size == 0)
return (ALIGNMENT_SIZE);
return ((size + ALIGNMENT_SIZE - 1) & (~(ALIGNMENT_SIZE - 1)));
}
static inline void
split(isc_mem_t *ctx, size_t size, size_t new_size) {
unsigned char *ptr;
size_t remaining_size;
/*
* Unlink a frag of size 'size'.
*/
ptr = (unsigned char *)ctx->freelists[size];
ctx->freelists[size] = ctx->freelists[size]->next;
ctx->stats[size].freefrags--;
/*
* Create a frag of size 'new_size' and link it in.
*/
((element *)ptr)->next = ctx->freelists[new_size];
ctx->freelists[new_size] = (element *)ptr;
ctx->stats[new_size].freefrags++;
/*
* Create a frag of size 'size - new_size' and link it in.
*/
remaining_size = size - new_size;
ptr += new_size;
((element *)ptr)->next = ctx->freelists[remaining_size];
ctx->freelists[remaining_size] = (element *)ptr;
ctx->stats[remaining_size].freefrags++;
}
static inline isc_boolean_t
try_split(isc_mem_t *ctx, size_t new_size) {
size_t i, doubled_size;
if (!ctx->trysplit)
return (ISC_FALSE);
/*
* Try splitting a frag that's at least twice as big as the size
* we want.
*/
doubled_size = new_size * 2;
for (i = doubled_size;
i < ctx->max_size;
i += ALIGNMENT_SIZE) {
if (ctx->freelists[i] != NULL) {
split(ctx, i, new_size);
return (ISC_TRUE);
}
}
/*
* No luck. Try splitting any frag bigger than the size we need.
*/
for (i = new_size + ALIGNMENT_SIZE;
i < doubled_size;
i += ALIGNMENT_SIZE) {
if (ctx->freelists[i] != NULL) {
split(ctx, i, new_size);
return (ISC_TRUE);
}
}
return (ISC_FALSE);
}
static inline isc_boolean_t
more_basic_blocks(isc_mem_t *ctx) {
void *new;
unsigned char *curr, *next;
unsigned char *first, *last;
unsigned char **table;
unsigned int table_size;
size_t increment;
int i;
/* Require: we hold the context lock. */
/*
* Did we hit the quota for this context?
*/
increment = NUM_BASIC_BLOCKS * ctx->mem_target;
if (ctx->quota != 0 && ctx->total + increment > ctx->quota)
return (ISC_FALSE);
INSIST(ctx->basic_table_count <= ctx->basic_table_size);
if (ctx->basic_table_count == ctx->basic_table_size) {
table_size = ctx->basic_table_size + TABLE_INCREMENT;
table = (ctx->memalloc)(ctx->arg,
table_size * sizeof (unsigned char *));
if (table == NULL)
return (ISC_FALSE);
if (ctx->basic_table_size != 0) {
memcpy(table, ctx->basic_table,
ctx->basic_table_size *
sizeof (unsigned char *));
(ctx->memfree)(ctx->arg, ctx->basic_table);
}
ctx->basic_table = table;
ctx->basic_table_size = table_size;
}
new = (ctx->memalloc)(ctx->arg, NUM_BASIC_BLOCKS * ctx->mem_target);
if (new == NULL)
return (ISC_FALSE);
ctx->total += increment;
ctx->basic_table[ctx->basic_table_count] = new;
ctx->basic_table_count++;
curr = new;
next = curr + ctx->mem_target;
for (i = 0; i < (NUM_BASIC_BLOCKS - 1); i++) {
((element *)curr)->next = (element *)next;
curr = next;
next += ctx->mem_target;
}
/*
* curr is now pointing at the last block in the
* array.
*/
((element *)curr)->next = NULL;
first = new;
last = first + NUM_BASIC_BLOCKS * ctx->mem_target - 1;
if (first < ctx->lowest || ctx->lowest == NULL)
ctx->lowest = first;
if (last > ctx->highest)
ctx->highest = last;
ctx->basic_blocks = new;
return (ISC_TRUE);
}
static inline isc_boolean_t
more_frags(isc_mem_t *ctx, size_t new_size) {
int i, frags;
size_t total_size;
void *new;
unsigned char *curr, *next;
/*
* Try to get more fragments by chopping up a basic block.
*/
if (ctx->basic_blocks == NULL) {
if (!more_basic_blocks(ctx)) {
/*
* We can't get more memory from the OS, or we've
* hit the quota for this context.
*/
/*
* XXXRTH "At quota" notification here.
*/
/*
* Maybe we can split one of our existing
* list frags.
*/
return (try_split(ctx, new_size));
}
}
total_size = ctx->mem_target;
new = ctx->basic_blocks;
ctx->basic_blocks = ctx->basic_blocks->next;
frags = total_size / new_size;
ctx->stats[new_size].blocks++;
ctx->stats[new_size].freefrags += frags;
/*
* Set up a linked-list of blocks of size
* "new_size".
*/
curr = new;
next = curr + new_size;
total_size -= new_size;
for (i = 0; i < (frags - 1); i++) {
((element *)curr)->next = (element *)next;
curr = next;
next += new_size;
total_size -= new_size;
}
/*
* Add the remaining fragment of the basic block to a free list.
*/
total_size = rmsize(total_size);
if (total_size > 0) {
((element *)next)->next = ctx->freelists[total_size];
ctx->freelists[total_size] = (element *)next;
ctx->stats[total_size].freefrags++;
}
/*
* curr is now pointing at the last block in the
* array.
*/
((element *)curr)->next = NULL;
ctx->freelists[new_size] = new;
return (ISC_TRUE);
}
static inline void *
mem_getunlocked(isc_mem_t *ctx, size_t size) {
size_t new_size = quantize(size);
void *ret;
if (size >= ctx->max_size || new_size >= ctx->max_size) {
/*
* memget() was called on something beyond our upper limit.
*/
if (ctx->quota != 0 && ctx->total + size > ctx->quota) {
ret = NULL;
goto done;
}
ret = (ctx->memalloc)(ctx->arg, size);
if (ret != NULL) {
ctx->total += size;
ctx->inuse += size;
ctx->stats[ctx->max_size].gets++;
ctx->stats[ctx->max_size].totalgets++;
/*
* If we don't set new_size to size, then the
* ISC_MEM_FILL code might write over bytes we
* don't own.
*/
new_size = size;
}
goto done;
}
/*
* If there are no blocks in the free list for this size, get a chunk
* of memory and then break it up into "new_size"-sized blocks, adding
* them to the free list.
*/
if (ctx->freelists[new_size] == NULL && !more_frags(ctx, new_size))
return (NULL);
/*
* The free list uses the "rounded-up" size "new_size".
*/
ret = ctx->freelists[new_size];
ctx->freelists[new_size] = ctx->freelists[new_size]->next;
/*
* The stats[] uses the _actual_ "size" requested by the
* caller, with the caveat (in the code above) that "size" >= the
* max. size (max_size) ends up getting recorded as a call to
* max_size.
*/
ctx->stats[size].gets++;
ctx->stats[size].totalgets++;
ctx->stats[new_size].freefrags--;
ctx->inuse += new_size;
done:
#if ISC_MEM_FILL
if (ret != NULL)
memset(ret, 0xbe, new_size); /* Mnemonic for "beef". */
#endif
return (ret);
}
#if ISC_MEM_FILL && ISC_MEM_CHECKOVERRUN
static inline void
check_overrun(void *mem, size_t size, size_t new_size) {
unsigned char *cp;
cp = (unsigned char *)mem;
cp += size;
while (size < new_size) {
INSIST(*cp == 0xbe);
cp++;
size++;
}
}
#endif
static inline void
mem_putunlocked(isc_mem_t *ctx, void *mem, size_t size) {
size_t new_size = quantize(size);
if (size == ctx->max_size || new_size >= ctx->max_size) {
/*
* memput() called on something beyond our upper limit.
*/
#if ISC_MEM_FILL
memset(mem, 0xde, size); /* Mnemonic for "dead". */
#endif
(ctx->memfree)(ctx->arg, mem);
INSIST(ctx->stats[ctx->max_size].gets != 0);
ctx->stats[ctx->max_size].gets--;
INSIST(size <= ctx->total);
ctx->inuse -= size;
ctx->total -= size;
return;
}
#if ISC_MEM_FILL
#if ISC_MEM_CHECKOVERRUN
check_overrun(mem, size, new_size);
#endif
memset(mem, 0xde, new_size); /* Mnemonic for "dead". */
#endif
/*
* The free list uses the "rounded-up" size "new_size".
*/
((element *)mem)->next = ctx->freelists[new_size];
ctx->freelists[new_size] = (element *)mem;
/*
* The stats[] uses the _actual_ "size" requested by the
* caller, with the caveat (in the code above) that "size" >= the
* max. size (max_size) ends up getting recorded as a call to
* max_size.
*/
INSIST(ctx->stats[size].gets != 0);
ctx->stats[size].gets--;
ctx->stats[new_size].freefrags++;
ctx->inuse -= new_size;
}
/*
* Private.
*/
static void *
default_memalloc(void *arg, size_t size) {
UNUSED(arg);
return (malloc(size));
}
static void
default_memfree(void *arg, void *ptr) {
UNUSED(arg);
free(ptr);
}
/*
* Public.
*/
isc_result_t
isc_mem_createx(size_t init_max_size, size_t target_size,
isc_memalloc_t memalloc, isc_memfree_t memfree, void *arg,
isc_mem_t **ctxp)
{
isc_mem_t *ctx;
REQUIRE(ctxp != NULL && *ctxp == NULL);
REQUIRE(memalloc != NULL);
REQUIRE(memfree != NULL);
INSIST((ALIGNMENT_SIZE & (ALIGNMENT_SIZE - 1)) == 0);
ctx = (memalloc)(arg, sizeof *ctx);
if (ctx == NULL)
return (ISC_R_NOMEMORY);
if (init_max_size == 0)
ctx->max_size = DEF_MAX_SIZE;
else
ctx->max_size = init_max_size;
if (target_size == 0)
ctx->mem_target = DEF_MEM_TARGET;
else
ctx->mem_target = target_size;
ctx->memalloc = memalloc;
ctx->memfree = memfree;
ctx->arg = arg;
ctx->freelists = (memalloc)(arg, ctx->max_size * sizeof (element *));
if (ctx->freelists == NULL) {
(memfree)(arg, ctx);
return (ISC_R_NOMEMORY);
}
ctx->checkfree = ISC_TRUE;
ctx->trysplit = ISC_FALSE;
memset(ctx->freelists, 0,
ctx->max_size * sizeof (element *));
ctx->stats = (memalloc)(arg,
(ctx->max_size+1) * sizeof (struct stats));
if (ctx->stats == NULL) {
(memfree)(arg, ctx->freelists);
(memfree)(arg, ctx);
return (ISC_R_NOMEMORY);
}
memset(ctx->stats, 0, (ctx->max_size + 1) * sizeof (struct stats));
ctx->basic_blocks = NULL;
ctx->basic_table = NULL;
ctx->basic_table_count = 0;
ctx->basic_table_size = 0;
ctx->lowest = NULL;
ctx->highest = NULL;
if (isc_mutex_init(&ctx->lock) != ISC_R_SUCCESS) {
(memfree)(arg, ctx->stats);
(memfree)(arg, ctx->freelists);
(memfree)(arg, ctx);
UNEXPECTED_ERROR(__FILE__, __LINE__,
"isc_mutex_init() %s",
isc_msgcat_get(isc_msgcat, ISC_MSGSET_GENERAL,
ISC_MSG_FAILED, "failed"));
return (ISC_R_UNEXPECTED);
}
ctx->references = 1;
ctx->quota = 0;
ctx->total = 0;
ctx->inuse = 0;
ctx->hi_water = 0;
ctx->lo_water = 0;
ctx->hi_called = ISC_FALSE;
ctx->water = NULL;
ctx->water_arg = NULL;
ctx->magic = MEM_MAGIC;
isc_ondestroy_init(&ctx->ondestroy);
ISC_LIST_INIT(ctx->pools);
#if ISC_MEM_TRACKLINES
ISC_LIST_INIT(ctx->debuglist);
#endif
*ctxp = ctx;
return (ISC_R_SUCCESS);
}
isc_result_t
isc_mem_create(size_t init_max_size, size_t target_size,
isc_mem_t **ctxp)
{
return (isc_mem_createx(init_max_size, target_size,
default_memalloc, default_memfree, NULL,
ctxp));
}
static void
destroy(isc_mem_t *ctx) {
unsigned int i;
isc_ondestroy_t ondest;
ctx->magic = 0;
INSIST(ISC_LIST_EMPTY(ctx->pools));
#if ISC_MEM_TRACKLINES
if (ctx->checkfree)
INSIST(ISC_LIST_EMPTY(ctx->debuglist));
else {
debuglink_t *dl;
for (dl = ISC_LIST_HEAD(ctx->debuglist);
dl != NULL;
dl = ISC_LIST_HEAD(ctx->debuglist)) {
ISC_LIST_UNLINK(ctx->debuglist, dl, link);
free(dl);
}
}
#endif
INSIST(ctx->references == 0);
if (ctx->checkfree) {
for (i = 0; i <= ctx->max_size; i++)
INSIST(ctx->stats[i].gets == 0);
}
#if 0 /* XXX brister debugging */
for (i = 0; i < ctx->basic_table_count; i++)
memset(ctx->basic_table[i], 0x0,
NUM_BASIC_BLOCKS * ctx->mem_target);
#endif
for (i = 0; i < ctx->basic_table_count; i++)
(ctx->memfree)(ctx->arg, ctx->basic_table[i]);
(ctx->memfree)(ctx->arg, ctx->freelists);
(ctx->memfree)(ctx->arg, ctx->stats);
(ctx->memfree)(ctx->arg, ctx->basic_table);
ondest = ctx->ondestroy;
DESTROYLOCK(&ctx->lock);
(ctx->memfree)(ctx->arg, ctx);
isc_ondestroy_notify(&ondest, ctx);
}
void
isc_mem_attach(isc_mem_t *source, isc_mem_t **targetp) {
REQUIRE(VALID_CONTEXT(source));
REQUIRE(targetp != NULL && *targetp == NULL);
LOCK(&source->lock);
source->references++;
UNLOCK(&source->lock);
*targetp = source;
}
void
isc_mem_detach(isc_mem_t **ctxp) {
isc_mem_t *ctx;
isc_boolean_t want_destroy = ISC_FALSE;
REQUIRE(ctxp != NULL);
ctx = *ctxp;
REQUIRE(VALID_CONTEXT(ctx));
LOCK(&ctx->lock);
INSIST(ctx->references > 0);
ctx->references--;
if (ctx->references == 0)
want_destroy = ISC_TRUE;
UNLOCK(&ctx->lock);
if (want_destroy)
destroy(ctx);
*ctxp = NULL;
}
/*
* isc_mem_putanddetach() is the equivalent of:
*
* mctx = NULL;
* isc_mem_attach(ptr->mctx, &mctx);
* isc_mem_detach(&ptr->mctx);
* isc_mem_put(mctx, ptr, sizeof(*ptr);
* isc_mem_detach(&mctx);
*/
void
isc__mem_putanddetach(isc_mem_t **ctxp, void *ptr, size_t size FLARG) {
isc_mem_t *ctx;
isc_boolean_t want_destroy = ISC_FALSE;
REQUIRE(ctxp != NULL);
ctx = *ctxp;
REQUIRE(VALID_CONTEXT(ctx));
REQUIRE(ptr != NULL);
/*
* Must be before mem_putunlocked() as ctxp is usually within
* [ptr..ptr+size).
*/
*ctxp = NULL;
LOCK(&ctx->lock);
DELETE_TRACE(ctx, ptr, size, file, line);
mem_putunlocked(ctx, ptr, size);
INSIST(ctx->references > 0);
ctx->references--;
if (ctx->references == 0)
want_destroy = ISC_TRUE;
UNLOCK(&ctx->lock);
if (want_destroy)
destroy(ctx);
}
void
isc_mem_destroy(isc_mem_t **ctxp) {
isc_mem_t *ctx;
/*
* This routine provides legacy support for callers who use mctxs
* without attaching/detaching.
*/
REQUIRE(ctxp != NULL);
ctx = *ctxp;
REQUIRE(VALID_CONTEXT(ctx));
LOCK(&ctx->lock);
REQUIRE(ctx->references == 1);
ctx->references--;
UNLOCK(&ctx->lock);
destroy(ctx);
*ctxp = NULL;
}
isc_result_t
isc_mem_ondestroy(isc_mem_t *ctx, isc_task_t *task, isc_event_t **event) {
isc_result_t res;
LOCK(&ctx->lock);
res = isc_ondestroy_register(&ctx->ondestroy, task, event);
UNLOCK(&ctx->lock);
return (res);
}
isc_result_t
isc_mem_restore(isc_mem_t *ctx) {
isc_result_t result;
result = isc_mutex_init(&ctx->lock);
if (result != ISC_R_SUCCESS)
ctx->magic = 0;
return (result);
}
void *
isc__mem_get(isc_mem_t *ctx, size_t size FLARG) {
void *ptr;
isc_boolean_t call_water = ISC_FALSE;
REQUIRE(VALID_CONTEXT(ctx));
LOCK(&ctx->lock);
ptr = mem_getunlocked(ctx, size);
ADD_TRACE(ctx, ptr, size, file, line);
if (ctx->hi_water != 0 && !ctx->hi_called &&
ctx->inuse > ctx->hi_water) {
ctx->hi_called = ISC_TRUE;
call_water = ISC_TRUE;
}
UNLOCK(&ctx->lock);
/* XXX remove */
if (ctx->hi_water)
fprintf(stderr,"inuse %u, total %u\n", ctx->inuse, ctx->total);
if (call_water) {
/* XXX remove */
fprintf(stderr, "%s water(%p, ISC_MEM_HIWATER)\n",
isc_msgcat_get(isc_msgcat, ISC_MSGSET_GENERAL,
ISC_MSG_CALLING, "calling"),
ctx->water_arg);
(ctx->water)(ctx->water_arg, ISC_MEM_HIWATER);
}
return (ptr);
}
void
isc__mem_put(isc_mem_t *ctx, void *ptr, size_t size FLARG)
{
isc_boolean_t call_water = ISC_FALSE;
REQUIRE(VALID_CONTEXT(ctx));
REQUIRE(ptr != NULL);
LOCK(&ctx->lock);
DELETE_TRACE(ctx, ptr, size, file, line);
mem_putunlocked(ctx, ptr, size);
if (ctx->hi_called && ctx->inuse < ctx->lo_water) {
ctx->hi_called = ISC_FALSE;
call_water = ISC_TRUE;
}
UNLOCK(&ctx->lock);
/* XXX remove */
if (ctx->hi_water)
fprintf(stderr,"inuse %u, total %u\n", ctx->inuse, ctx->total);
if (call_water) {
/* XXX remove */
fprintf(stderr, "%s water(%p,ISC_MEM_LOWATER)\n",
isc_msgcat_get(isc_msgcat, ISC_MSGSET_GENERAL,
ISC_MSG_CALLING, "calling"),
ctx->water_arg);
(ctx->water)(ctx->water_arg, ISC_MEM_LOWATER);
}
}
isc_result_t
isc_mem_preallocate(isc_mem_t *ctx) {
size_t i;
isc_result_t result = ISC_R_SUCCESS;
void *ptr;
REQUIRE(VALID_CONTEXT(ctx));
LOCK(&ctx->lock);
for (i = 0; i < ctx->max_size; i += ALIGNMENT_SIZE) {
ptr = mem_getunlocked(ctx, i);
if (ptr == NULL) {
result = ISC_R_NOMEMORY;
break;
}
mem_putunlocked(ctx, ptr, i);
}
UNLOCK(&ctx->lock);
return (result);
}
/*
* Print the stats[] on the stream "out" with suitable formatting.
*/
void
isc_mem_stats(isc_mem_t *ctx, FILE *out) {
size_t i;
const struct stats *s;
const isc_mempool_t *pool;
REQUIRE(VALID_CONTEXT(ctx));
LOCK(&ctx->lock);
if (ctx->freelists != NULL) {
for (i = 0; i <= ctx->max_size; i++) {
s = &ctx->stats[i];
if (s->totalgets == 0 && s->gets == 0)
continue;
fprintf(out, "%s%5lu: %11lu gets, %11lu rem",
(i == ctx->max_size) ? ">=" : " ",
(unsigned long) i, s->totalgets, s->gets);
if (s->blocks != 0 || s->freefrags != 0)
fprintf(out, " (%lu bl, %lu ff)",
s->blocks, s->freefrags);
fputc('\n', out);
}
}
/*
* Note that since a pool can be locked now, these stats might be
* somewhat off if the pool is in active use at the time the stats
* are dumped. The link fields are protected by the isc_mem_t's
* lock, however, so walking this list and extracting integers from
* stats fields is always safe.
*/
pool = ISC_LIST_HEAD(ctx->pools);
if (pool != NULL) {
fprintf(out, isc_msgcat_get(isc_msgcat, ISC_MSGSET_MEM,
ISC_MSG_POOLSTATS,
"[Pool statistics]\n"));
fprintf(out, "%15s %10s %10s %10s %10s %10s %10s %10s %1s\n",
isc_msgcat_get(isc_msgcat, ISC_MSGSET_MEM,
ISC_MSG_POOLNAME, "name"),
isc_msgcat_get(isc_msgcat, ISC_MSGSET_MEM,
ISC_MSG_POOLSIZE, "size"),
isc_msgcat_get(isc_msgcat, ISC_MSGSET_MEM,
ISC_MSG_POOLMAXALLOC, "maxalloc"),
isc_msgcat_get(isc_msgcat, ISC_MSGSET_MEM,
ISC_MSG_POOLALLOCATED, "allocated"),
isc_msgcat_get(isc_msgcat, ISC_MSGSET_MEM,
ISC_MSG_POOLFREECOUNT, "freecount"),
isc_msgcat_get(isc_msgcat, ISC_MSGSET_MEM,
ISC_MSG_POOLFREEMAX, "freemax"),
isc_msgcat_get(isc_msgcat, ISC_MSGSET_MEM,
ISC_MSG_POOLFILLCOUNT, "fillcount"),
isc_msgcat_get(isc_msgcat, ISC_MSGSET_MEM,
ISC_MSG_POOLGETS, "gets"),
"L");
}
while (pool != NULL) {
fprintf(out, "%15s %10lu %10u %10u %10u %10u %10u %10u %s\n",
pool->name, (unsigned long) pool->size, pool->maxalloc,
pool->allocated, pool->freecount, pool->freemax,
pool->fillcount, pool->gets,
(pool->lock == NULL ? "N" : "Y"));
pool = ISC_LIST_NEXT(pool, link);
}
#if ISC_MEM_TRACKLINES
if (MEM_RECORD) {
debuglink_t *dl;
unsigned int i;
fprintf(out, isc_msgcat_get(isc_msgcat, ISC_MSGSET_MEM,
ISC_MSG_DUMPALLOC,
"DUMP OF ALL OUTSTANDING "
"MEMORY ALLOCATIONS\n"));
dl = ISC_LIST_HEAD(ctx->debuglist);
if (dl == NULL)
fprintf(out, isc_msgcat_get(isc_msgcat, ISC_MSGSET_MEM,
ISC_MSG_NONE,
"\tNone.\n"));
while (dl != NULL) {
for (i = 0 ; i < DEBUGLIST_COUNT ; i++)
if (dl->ptr[i] != NULL)
fprintf(out,
isc_msgcat_get(isc_msgcat,
ISC_MSGSET_MEM,
ISC_MSG_PTRFILELINE,
"\tptr %p "
"file %s "
"line %u\n"),
dl->ptr[i], dl->file[i],
dl->line[i]);
dl = ISC_LIST_NEXT(dl, link);
}
}
#endif
UNLOCK(&ctx->lock);
}
isc_boolean_t
isc_mem_valid(isc_mem_t *ctx, void *ptr) {
unsigned char *cp = ptr;
isc_boolean_t result = ISC_FALSE;
REQUIRE(VALID_CONTEXT(ctx));
LOCK(&ctx->lock);
if (ctx->lowest != NULL && cp >= ctx->lowest && cp <= ctx->highest)
result = ISC_TRUE;
UNLOCK(&ctx->lock);
return (result);
}
/*
* Replacements for malloc() and free() -- they implicitly remember the
* size of the object allocated (with some additional overhead).
*/
static void *
isc__mem_allocateunlocked(isc_mem_t *ctx, size_t size) {
size_info *si;
size += ALIGNMENT_SIZE;
si = mem_getunlocked(ctx, size);
if (si == NULL)
return (NULL);
si->u.size = size;
return (&si[1]);
}
void *
isc__mem_allocate(isc_mem_t *ctx, size_t size FLARG) {
size_info *si;
REQUIRE(VALID_CONTEXT(ctx));
LOCK(&ctx->lock);
si = isc__mem_allocateunlocked(ctx, size);
#if ISC_MEM_TRACKLINES
if (si != NULL)
ADD_TRACE(ctx, si, si[-1].u.size, file, line);
#endif
UNLOCK(&ctx->lock);
return (si);
}
void
isc__mem_free(isc_mem_t *ctx, void *ptr FLARG) {
size_info *si;
REQUIRE(VALID_CONTEXT(ctx));
REQUIRE(ptr != NULL);
si = &(((size_info *)ptr)[-1]);
LOCK(&ctx->lock);
DELETE_TRACE(ctx, ptr, si->u.size, file, line);
mem_putunlocked(ctx, si, si->u.size);
UNLOCK(&ctx->lock);
}
/*
* Other useful things.
*/
char *
isc__mem_strdup(isc_mem_t *mctx, const char *s FLARG) {
size_t len;
char *ns;
REQUIRE(VALID_CONTEXT(mctx));
REQUIRE(s != NULL);
len = strlen(s);
ns = isc__mem_allocate(mctx, len + 1 FLARG_PASS);
if (ns != NULL)
strncpy(ns, s, len + 1);
return (ns);
}
void
isc_mem_setdestroycheck(isc_mem_t *ctx, isc_boolean_t flag) {
REQUIRE(VALID_CONTEXT(ctx));
LOCK(&ctx->lock);
ctx->checkfree = flag;
UNLOCK(&ctx->lock);
}
void
isc_mem_setsplit(isc_mem_t *ctx, isc_boolean_t flag) {
REQUIRE(VALID_CONTEXT(ctx));
LOCK(&ctx->lock);
ctx->trysplit = flag;
UNLOCK(&ctx->lock);
}
/*
* Quotas
*/
void
isc_mem_setquota(isc_mem_t *ctx, size_t quota) {
REQUIRE(VALID_CONTEXT(ctx));
LOCK(&ctx->lock);
ctx->quota = quota;
UNLOCK(&ctx->lock);
}
size_t
isc_mem_getquota(isc_mem_t *ctx) {
size_t quota;
REQUIRE(VALID_CONTEXT(ctx));
LOCK(&ctx->lock);
quota = ctx->quota;
UNLOCK(&ctx->lock);
return (quota);
}
size_t
isc_mem_inuse(isc_mem_t *ctx) {
size_t inuse;
REQUIRE(VALID_CONTEXT(ctx));
LOCK(&ctx->lock);
inuse = ctx->inuse;
UNLOCK(&ctx->lock);
return (inuse);
}
void
isc_mem_setwater(isc_mem_t *ctx, isc_mem_water_t water, void *water_arg,
size_t hiwater, size_t lowater)
{
REQUIRE(VALID_CONTEXT(ctx));
if (water != NULL) {
REQUIRE(hiwater > lowater);
REQUIRE(hiwater > 0);
REQUIRE(lowater > 0);
}
LOCK(&ctx->lock);
if (water == NULL) {
ctx->water = NULL;
ctx->water_arg = NULL;
ctx->hi_water = 0;
ctx->lo_water = 0;
ctx->hi_called = ISC_FALSE;
} else {
ctx->water = water;
ctx->water_arg = water_arg;
ctx->hi_water = hiwater;
ctx->lo_water = lowater;
ctx->hi_called = ISC_FALSE;
}
UNLOCK(&ctx->lock);
}
/*
* Memory pool stuff
*/
#if 0
/*
* Free all but "n" items from the pool's free list. If n == 0, all items
* will be returned to the mctx.
*/
static void
mempool_release(isc_mempool_t *mpctx, unsigned int n) {
isc_mem_t *mctx;
element *item;
element *next;
unsigned int count;
mctx = mpctx->mctx;
if (mpctx->freecount <= n)
return;
INSIST(mpctx->items != NULL);
item = mpctx->items;
for (count = 0 ; count < n ; count++) {
item = item->next;
INSIST(item != NULL);
}
/*
* All remaining items are to be freed. Lock the context once,
* free them all, and unlock the context.
*/
LOCK(&mctx->lock);
do {
next = item->next;
mem_putunlocked(mctx, item, mpctx->size);
INSIST(mpctx->freecount > 0);
mpctx->freecount--;
item = next;
} while (item != NULL);
UNLOCK(&mctx->lock);
}
#endif
/*
* Release all items on the free list. No locking is done, the memory
* context must be locked, and the pool if needed.
*/
static void
mempool_releaseall(isc_mempool_t *mpctx) {
isc_mem_t *mctx;
element *item;
element *next;
mctx = mpctx->mctx;
if (mpctx->freecount == 0)
return;
INSIST(mpctx->items != NULL);
item = mpctx->items;
do {
next = item->next;
mem_putunlocked(mctx, item, mpctx->size);
INSIST(mpctx->freecount > 0);
mpctx->freecount--;
item = next;
} while (item != NULL);
}
isc_result_t
isc_mempool_create(isc_mem_t *mctx, size_t size, isc_mempool_t **mpctxp) {
isc_mempool_t *mpctx;
REQUIRE(VALID_CONTEXT(mctx));
REQUIRE(size > 0);
REQUIRE(mpctxp != NULL && *mpctxp == NULL);
/*
* Allocate space for this pool, initialize values, and if all works
* well, attach to the memory context.
*/
LOCK(&mctx->lock);
mpctx = mem_getunlocked(mctx, sizeof(isc_mempool_t));
if (mpctx == NULL) {
UNLOCK(&mctx->lock);
return (ISC_R_NOMEMORY);
}
mpctx->magic = MEMPOOL_MAGIC;
mpctx->lock = NULL;
mpctx->mctx = mctx;
mpctx->size = size;
mpctx->maxalloc = UINT_MAX;
mpctx->allocated = 0;
mpctx->freecount = 0;
mpctx->freemax = 1;
mpctx->fillcount = 1;
mpctx->gets = 0;
#if ISC_MEMPOOL_NAMES
mpctx->name[0] = 0;
#endif
mpctx->items = NULL;
*mpctxp = mpctx;
ISC_LIST_INITANDAPPEND(mctx->pools, mpctx, link);
UNLOCK(&mctx->lock);
return (ISC_R_SUCCESS);
}
void
isc_mempool_setname(isc_mempool_t *mpctx, const char *name) {
REQUIRE(name != NULL);
#if ISC_MEMPOOL_NAMES
if (mpctx->lock != NULL)
LOCK(mpctx->lock);
strncpy(mpctx->name, name, sizeof(mpctx->name) - 1);
mpctx->name[sizeof(mpctx->name) - 1] = '\0';
if (mpctx->lock != NULL)
UNLOCK(mpctx->lock);
#else
UNUSED(mpctx);
UNUSED(name);
#endif
}
void
isc_mempool_destroy(isc_mempool_t **mpctxp) {
isc_mempool_t *mpctx;
isc_mem_t *mctx;
isc_mutex_t *lock;
REQUIRE(mpctxp != NULL);
mpctx = *mpctxp;
REQUIRE(VALID_MEMPOOL(mpctx));
REQUIRE(mpctx->allocated == 0);
mctx = mpctx->mctx;
lock = mpctx->lock;
if (lock != NULL)
LOCK(lock);
LOCK(&mctx->lock);
/*
* Return any items on the free list
*/
mempool_releaseall(mpctx);
/*
* Remove our linked list entry from the memory context.
*/
ISC_LIST_UNLINK(mctx->pools, mpctx, link);
mpctx->magic = 0;
mem_putunlocked(mpctx->mctx, mpctx, sizeof(isc_mempool_t));
UNLOCK(&mctx->lock);
if (lock != NULL)
UNLOCK(lock);
*mpctxp = NULL;
}
void
isc_mempool_associatelock(isc_mempool_t *mpctx, isc_mutex_t *lock) {
REQUIRE(VALID_MEMPOOL(mpctx));
REQUIRE(mpctx->lock == NULL);
REQUIRE(lock != NULL);
mpctx->lock = lock;
}
void *
isc__mempool_get(isc_mempool_t *mpctx FLARG) {
element *item;
isc_mem_t *mctx;
unsigned int i;
REQUIRE(VALID_MEMPOOL(mpctx));
mctx = mpctx->mctx;
if (mpctx->lock != NULL)
LOCK(mpctx->lock);
/*
* Don't let the caller go over quota
*/
if (mpctx->allocated >= mpctx->maxalloc) {
item = NULL;
goto out;
}
/*
* if we have a free list item, return the first here
*/
item = mpctx->items;
if (item != NULL) {
mpctx->items = item->next;
INSIST(mpctx->freecount > 0);
mpctx->freecount--;
mpctx->gets++;
mpctx->allocated++;
goto out;
}
/*
* We need to dip into the well. Lock the memory context here and
* fill up our free list.
*/
LOCK(&mctx->lock);
for (i = 0 ; i < mpctx->fillcount ; i++) {
item = mem_getunlocked(mctx, mpctx->size);
if (item == NULL)
break;
item->next = mpctx->items;
mpctx->items = item;
mpctx->freecount++;
}
UNLOCK(&mctx->lock);
/*
* If we didn't get any items, return NULL.
*/
item = mpctx->items;
if (item == NULL)
goto out;
mpctx->items = item->next;
mpctx->freecount--;
mpctx->gets++;
mpctx->allocated++;
out:
if (mpctx->lock != NULL)
UNLOCK(mpctx->lock);
if (item != NULL) {
LOCK(&mctx->lock);
ADD_TRACE(mctx, item, mpctx->size, file, line);
UNLOCK(&mctx->lock);
}
return (item);
}
void
isc__mempool_put(isc_mempool_t *mpctx, void *mem FLARG) {
isc_mem_t *mctx;
element *item;
REQUIRE(VALID_MEMPOOL(mpctx));
REQUIRE(mem != NULL);
mctx = mpctx->mctx;
if (mpctx->lock != NULL)
LOCK(mpctx->lock);
INSIST(mpctx->allocated > 0);
mpctx->allocated--;
DELETE_TRACE(mctx, mem, mpctx->size, file, line);
/*
* If our free list is full, return this to the mctx directly.
*/
if (mpctx->freecount >= mpctx->freemax) {
LOCK(&mctx->lock);
mem_putunlocked(mctx, mem, mpctx->size);
UNLOCK(&mctx->lock);
if (mpctx->lock != NULL)
UNLOCK(mpctx->lock);
return;
}
/*
* Otherwise, attach it to our free list and bump the counter.
*/
mpctx->freecount++;
item = (element *)mem;
item->next = mpctx->items;
mpctx->items = item;
if (mpctx->lock != NULL)
UNLOCK(mpctx->lock);
}
/*
* Quotas
*/
void
isc_mempool_setfreemax(isc_mempool_t *mpctx, unsigned int limit) {
REQUIRE(VALID_MEMPOOL(mpctx));
if (mpctx->lock != NULL)
LOCK(mpctx->lock);
mpctx->freemax = limit;
if (mpctx->lock != NULL)
UNLOCK(mpctx->lock);
}
unsigned int
isc_mempool_getfreemax(isc_mempool_t *mpctx) {
unsigned int freemax;
REQUIRE(VALID_MEMPOOL(mpctx));
if (mpctx->lock != NULL)
LOCK(mpctx->lock);
freemax = mpctx->freemax;
if (mpctx->lock != NULL)
UNLOCK(mpctx->lock);
return (freemax);
}
unsigned int
isc_mempool_getfreecount(isc_mempool_t *mpctx) {
unsigned int freecount;
REQUIRE(VALID_MEMPOOL(mpctx));
if (mpctx->lock != NULL)
LOCK(mpctx->lock);
freecount = mpctx->freecount;
if (mpctx->lock != NULL)
UNLOCK(mpctx->lock);
return (freecount);
}
void
isc_mempool_setmaxalloc(isc_mempool_t *mpctx, unsigned int limit) {
REQUIRE(limit > 0);
REQUIRE(VALID_MEMPOOL(mpctx));
if (mpctx->lock != NULL)
LOCK(mpctx->lock);
mpctx->maxalloc = limit;
if (mpctx->lock != NULL)
UNLOCK(mpctx->lock);
}
unsigned int
isc_mempool_getmaxalloc(isc_mempool_t *mpctx) {
unsigned int maxalloc;
REQUIRE(VALID_MEMPOOL(mpctx));
if (mpctx->lock != NULL)
LOCK(mpctx->lock);
maxalloc = mpctx->maxalloc;
if (mpctx->lock != NULL)
UNLOCK(mpctx->lock);
return (maxalloc);
}
unsigned int
isc_mempool_getallocated(isc_mempool_t *mpctx) {
unsigned int allocated;
REQUIRE(VALID_MEMPOOL(mpctx));
if (mpctx->lock != NULL)
LOCK(mpctx->lock);
allocated = mpctx->allocated;
if (mpctx->lock != NULL)
UNLOCK(mpctx->lock);
return (allocated);
}
void
isc_mempool_setfillcount(isc_mempool_t *mpctx, unsigned int limit) {
REQUIRE(limit > 0);
REQUIRE(VALID_MEMPOOL(mpctx));
if (mpctx->lock != NULL)
LOCK(mpctx->lock);
mpctx->fillcount = limit;
if (mpctx->lock != NULL)
UNLOCK(mpctx->lock);
}
unsigned int
isc_mempool_getfillcount(isc_mempool_t *mpctx) {
unsigned int fillcount;
REQUIRE(VALID_MEMPOOL(mpctx));
if (mpctx->lock != NULL)
LOCK(mpctx->lock);
fillcount = mpctx->fillcount;
if (mpctx->lock != NULL)
UNLOCK(mpctx->lock);
return (fillcount);
}