/*
* Copyright (C) 2011-2017 Internet Systems Consortium, Inc. ("ISC")
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
/*! \file */
#include <config.h>
#include <isc/buffer.h>
#include <isc/mem.h>
#include <isc/net.h>
#include <isc/netaddr.h>
#include <isc/print.h>
#include <isc/rwlock.h>
#include <isc/stdlib.h>
#include <isc/string.h>
#include <isc/util.h>
#include <dns/db.h>
#include <dns/fixedname.h>
#include <dns/log.h>
#include <dns/rdata.h>
#include <dns/rdataset.h>
#include <dns/rdatastruct.h>
#include <dns/result.h>
#include <dns/rbt.h>
#include <dns/rpz.h>
#include <dns/view.h>
/*
* Parallel radix trees for databases of response policy IP addresses
*
* The radix or patricia trees are somewhat specialized to handle response
* policy addresses by representing the two sets of IP addresses and name
* server IP addresses in a single tree. One set of IP addresses is
* for rpz-ip policies or policies triggered by addresses in A or
* AAAA records in responses.
* The second set is for rpz-nsip policies or policies triggered by addresses
* in A or AAAA records for NS records that are authorities for responses.
*
* Each leaf indicates that an IP address is listed in the IP address or the
* name server IP address policy sub-zone (or both) of the corresponding
* response policy zone. The policy data such as a CNAME or an A record
* is kept in the policy zone. After an IP address has been found in a radix
* tree, the node in the policy zone's database is found by converting
* the IP address to a domain name in a canonical form.
*
*
* The response policy zone canonical form of an IPv6 address is one of:
* prefix.W.W.W.W.W.W.W.W
* prefix.WORDS.zz
* prefix.WORDS.zz.WORDS
* prefix.zz.WORDS
* where
* prefix is the prefix length of the IPv6 address between 1 and 128
* W is a number between 0 and 65535
* WORDS is one or more numbers W separated with "."
* zz corresponds to :: in the standard IPv6 text representation
*
* The canonical form of IPv4 addresses is:
* prefix.B.B.B.B
* where
* prefix is the prefix length of the address between 1 and 32
* B is a number between 0 and 255
*
* Names for IPv4 addresses are distinguished from IPv6 addresses by having
* 5 labels all of which are numbers, and a prefix between 1 and 32.
*/
/*
* Use a private definition of IPv6 addresses because s6_addr32 is not
* always defined and our IPv6 addresses are in non-standard byte order
*/
typedef isc_uint32_t dns_rpz_cidr_word_t;
#define DNS_RPZ_CIDR_WORD_BITS ((int)sizeof(dns_rpz_cidr_word_t)*8)
#define DNS_RPZ_CIDR_KEY_BITS ((int)sizeof(dns_rpz_cidr_key_t)*8)
#define DNS_RPZ_CIDR_WORDS (128/DNS_RPZ_CIDR_WORD_BITS)
typedef struct {
dns_rpz_cidr_word_t w[DNS_RPZ_CIDR_WORDS];
} dns_rpz_cidr_key_t;
#define ADDR_V4MAPPED 0xffff
#define KEY_IS_IPV4(prefix,ip) ((prefix) >= 96 && (ip)->w[0] == 0 && \
(ip)->w[1] == 0 && (ip)->w[2] == ADDR_V4MAPPED)
#define DNS_RPZ_WORD_MASK(b) ((b) == 0 ? (dns_rpz_cidr_word_t)(-1) \
: ((dns_rpz_cidr_word_t)(-1) \
<< (DNS_RPZ_CIDR_WORD_BITS - (b))))
/*
* Get bit #n from the array of words of an IP address.
*/
#define DNS_RPZ_IP_BIT(ip, n) (1 & ((ip)->w[(n)/DNS_RPZ_CIDR_WORD_BITS] >> \
(DNS_RPZ_CIDR_WORD_BITS \
- 1 - ((n) % DNS_RPZ_CIDR_WORD_BITS))))
/*
* A triplet of arrays of bits flagging the existence of
* client-IP, IP, and NSIP policy triggers.
*/
typedef struct dns_rpz_addr_zbits dns_rpz_addr_zbits_t;
struct dns_rpz_addr_zbits {
dns_rpz_zbits_t client_ip;
dns_rpz_zbits_t ip;
dns_rpz_zbits_t nsip;
};
/*
* A CIDR or radix tree node.
*/
struct dns_rpz_cidr_node {
dns_rpz_cidr_node_t *parent;
dns_rpz_cidr_node_t *child[2];
dns_rpz_cidr_key_t ip;
dns_rpz_prefix_t prefix;
dns_rpz_addr_zbits_t set;
dns_rpz_addr_zbits_t sum;
};
/*
* A pair of arrays of bits flagging the existence of
* QNAME and NSDNAME policy triggers.
*/
typedef struct dns_rpz_nm_zbits dns_rpz_nm_zbits_t;
struct dns_rpz_nm_zbits {
dns_rpz_zbits_t qname;
dns_rpz_zbits_t ns;
};
/*
* The data in a RBT node has two pairs of bits for policy zones.
* One pair is for the corresponding name of the node such as example.com
* and the other pair is for a wildcard child such as *.example.com.
*/
typedef struct dns_rpz_nm_data dns_rpz_nm_data_t;
struct dns_rpz_nm_data {
dns_rpz_nm_zbits_t set;
dns_rpz_nm_zbits_t wild;
};
#if 0
/*
* Catch a name while debugging.
*/
static void
catch_name(const dns_name_t *src_name, const char *tgt, const char *str) {
dns_fixedname_t tgt_namef;
dns_name_t *tgt_name;
dns_fixedname_init(&tgt_namef);
tgt_name = dns_fixedname_name(&tgt_namef);
dns_name_fromstring(tgt_name, tgt, DNS_NAME_DOWNCASE, NULL);
if (dns_name_equal(src_name, tgt_name)) {
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
DNS_LOGMODULE_RBTDB, DNS_RPZ_ERROR_LEVEL,
"rpz hit failed: %s %s", str, tgt);
}
}
#endif
const char *
dns_rpz_type2str(dns_rpz_type_t type) {
switch (type) {
case DNS_RPZ_TYPE_CLIENT_IP:
return ("CLIENT-IP");
case DNS_RPZ_TYPE_QNAME:
return ("QNAME");
case DNS_RPZ_TYPE_IP:
return ("IP");
case DNS_RPZ_TYPE_NSIP:
return ("NSIP");
case DNS_RPZ_TYPE_NSDNAME:
return ("NSDNAME");
case DNS_RPZ_TYPE_BAD:
break;
}
FATAL_ERROR(__FILE__, __LINE__, "impossible rpz type %d", type);
return ("impossible");
}
dns_rpz_policy_t
dns_rpz_str2policy(const char *str) {
static struct {
const char *str;
dns_rpz_policy_t policy;
} tbl[] = {
{"given", DNS_RPZ_POLICY_GIVEN},
{"disabled", DNS_RPZ_POLICY_DISABLED},
{"passthru", DNS_RPZ_POLICY_PASSTHRU},
{"drop", DNS_RPZ_POLICY_DROP},
{"tcp-only", DNS_RPZ_POLICY_TCP_ONLY},
{"nxdomain", DNS_RPZ_POLICY_NXDOMAIN},
{"nodata", DNS_RPZ_POLICY_NODATA},
{"cname", DNS_RPZ_POLICY_CNAME},
{"no-op", DNS_RPZ_POLICY_PASSTHRU}, /* old passthru */
};
unsigned int n;
if (str == NULL)
return (DNS_RPZ_POLICY_ERROR);
for (n = 0; n < sizeof(tbl)/sizeof(tbl[0]); ++n) {
if (!strcasecmp(tbl[n].str, str))
return (tbl[n].policy);
}
return (DNS_RPZ_POLICY_ERROR);
}
const char *
dns_rpz_policy2str(dns_rpz_policy_t policy) {
const char *str;
switch (policy) {
case DNS_RPZ_POLICY_PASSTHRU:
str = "PASSTHRU";
break;
case DNS_RPZ_POLICY_DROP:
str = "DROP";
break;
case DNS_RPZ_POLICY_TCP_ONLY:
str = "TCP-ONLY";
break;
case DNS_RPZ_POLICY_NXDOMAIN:
str = "NXDOMAIN";
break;
case DNS_RPZ_POLICY_NODATA:
str = "NODATA";
break;
case DNS_RPZ_POLICY_RECORD:
str = "Local-Data";
break;
case DNS_RPZ_POLICY_CNAME:
case DNS_RPZ_POLICY_WILDCNAME:
str = "CNAME";
break;
case DNS_RPZ_POLICY_MISS:
str = "MISS";
break;
default:
str = "";
POST(str);
INSIST(0);
}
return (str);
}
/*
* Return the bit number of the highest set bit in 'zbit'.
* (for example, 0x01 returns 0, 0xFF returns 7, etc.)
*/
static int
zbit_to_num(dns_rpz_zbits_t zbit) {
dns_rpz_num_t rpz_num;
REQUIRE(zbit != 0);
rpz_num = 0;
#if DNS_RPZ_MAX_ZONES > 32
if ((zbit & 0xffffffff00000000L) != 0) {
zbit >>= 32;
rpz_num += 32;
}
#endif
if ((zbit & 0xffff0000) != 0) {
zbit >>= 16;
rpz_num += 16;
}
if ((zbit & 0xff00) != 0) {
zbit >>= 8;
rpz_num += 8;
}
if ((zbit & 0xf0) != 0) {
zbit >>= 4;
rpz_num += 4;
}
if ((zbit & 0xc) != 0) {
zbit >>= 2;
rpz_num += 2;
}
if ((zbit & 2) != 0)
++rpz_num;
return (rpz_num);
}
/*
* Make a set of bit masks given one or more bits and their type.
*/
static void
make_addr_set(dns_rpz_addr_zbits_t *tgt_set, dns_rpz_zbits_t zbits,
dns_rpz_type_t type)
{
switch (type) {
case DNS_RPZ_TYPE_CLIENT_IP:
tgt_set->client_ip = zbits;
tgt_set->ip = 0;
tgt_set->nsip = 0;
break;
case DNS_RPZ_TYPE_IP:
tgt_set->client_ip = 0;
tgt_set->ip = zbits;
tgt_set->nsip = 0;
break;
case DNS_RPZ_TYPE_NSIP:
tgt_set->client_ip = 0;
tgt_set->ip = 0;
tgt_set->nsip = zbits;
break;
default:
INSIST(0);
break;
}
}
static void
make_nm_set(dns_rpz_nm_zbits_t *tgt_set,
dns_rpz_num_t rpz_num, dns_rpz_type_t type)
{
switch (type) {
case DNS_RPZ_TYPE_QNAME:
tgt_set->qname = DNS_RPZ_ZBIT(rpz_num);
tgt_set->ns = 0;
break;
case DNS_RPZ_TYPE_NSDNAME:
tgt_set->qname = 0;
tgt_set->ns = DNS_RPZ_ZBIT(rpz_num);
break;
default:
INSIST(0);
break;
}
}
/*
* Mark a node and all of its parents as having client-IP, IP, or NSIP data
*/
static void
set_sum_pair(dns_rpz_cidr_node_t *cnode) {
dns_rpz_cidr_node_t *child;
dns_rpz_addr_zbits_t sum;
do {
sum = cnode->set;
child = cnode->child[0];
if (child != NULL) {
sum.client_ip |= child->sum.client_ip;
sum.ip |= child->sum.ip;
sum.nsip |= child->sum.nsip;
}
child = cnode->child[1];
if (child != NULL) {
sum.client_ip |= child->sum.client_ip;
sum.ip |= child->sum.ip;
sum.nsip |= child->sum.nsip;
}
if (cnode->sum.client_ip == sum.client_ip &&
cnode->sum.ip == sum.ip &&
cnode->sum.nsip == sum.nsip)
break;
cnode->sum = sum;
cnode = cnode->parent;
} while (cnode != NULL);
}
/* Caller must hold rpzs->maint_lock */
static void
fix_qname_skip_recurse(dns_rpz_zones_t *rpzs) {
dns_rpz_zbits_t mask;
/*
* qname_wait_recurse and qname_skip_recurse are used to
* implement the "qname-wait-recurse" config option.
*
* When "qname-wait-recurse" is yes, no processing happens
* without recursion. In this case, qname_wait_recurse is true,
* and qname_skip_recurse (a bitfield indicating which policy
* zones can be processed without recursion) is set to all 0's
* by fix_qname_skip_recurse().
*
* When "qname-wait-recurse" is no, qname_skip_recurse may be
* set to a non-zero value by fix_qname_skip_recurse(). The mask
* has to have bits set for the policy zones for which
* processing may continue without recursion, and bits cleared
* for the rest.
*
* (1) The ARM says:
*
* The "qname-wait-recurse no" option overrides that default
* behavior when recursion cannot change a non-error
* response. The option does not affect QNAME or client-IP
* triggers in policy zones listed after other zones
* containing IP, NSIP and NSDNAME triggers, because those may
* depend on the A, AAAA, and NS records that would be found
* during recursive resolution.
*
* Let's consider the following:
*
* zbits_req = (rpzs->have.ipv4 | rpzs->have.ipv6 |
* rpzs->have.nsdname |
* rpzs->have.nsipv4 | rpzs->have.nsipv6);
*
* zbits_req now contains bits set for zones which require
* recursion.
*
* But going by the description in the ARM, if the first policy
* zone requires recursion, then all zones after that (higher
* order bits) have to wait as well. If the Nth zone requires
* recursion, then (N+1)th zone onwards all need to wait.
*
* So mapping this, examples:
*
* zbits_req = 0b000 mask = 0xffffffff (no zones have to wait for
* recursion)
* zbits_req = 0b001 mask = 0x00000000 (all zones have to wait)
* zbits_req = 0b010 mask = 0x00000001 (the first zone doesn't have to
* wait, second zone onwards need
* to wait)
* zbits_req = 0b011 mask = 0x00000000 (all zones have to wait)
* zbits_req = 0b100 mask = 0x00000011 (the 1st and 2nd zones don't
* have to wait, third zone
* onwards need to wait)
*
* More generally, we have to count the number of trailing 0
* bits in zbits_req and only these can be processed without
* recursion. All the rest need to wait.
*
* (2) The ARM says that "qname-wait-recurse no" option
* overrides the default behavior when recursion cannot change a
* non-error response. So, in the order of listing of policy
* zones, within the first policy zone where recursion may be
* required, we should first allow CLIENT-IP and QNAME policy
* records to be attempted without recursion.
*/
/*
* Get a mask covering all policy zones that are not subordinate to
* other policy zones containing triggers that require that the
* qname be resolved before they can be checked.
*/
rpzs->have.client_ip = rpzs->have.client_ipv4 | rpzs->have.client_ipv6;
rpzs->have.ip = rpzs->have.ipv4 | rpzs->have.ipv6;
rpzs->have.nsip = rpzs->have.nsipv4 | rpzs->have.nsipv6;
if (rpzs->p.qname_wait_recurse) {
mask = 0;
} else {
dns_rpz_zbits_t zbits_req;
dns_rpz_zbits_t zbits_notreq;
dns_rpz_zbits_t mask2;
dns_rpz_zbits_t req_mask;
/*
* Get the masks of zones with policies that
* do/don't require recursion
*/
zbits_req = (rpzs->have.ipv4 | rpzs->have.ipv6 |
rpzs->have.nsdname |
rpzs->have.nsipv4 | rpzs->have.nsipv6);
zbits_notreq = (rpzs->have.client_ip | rpzs->have.qname);
if (zbits_req == 0) {
mask = DNS_RPZ_ALL_ZBITS;
goto set;
}
/*
* req_mask is a mask covering used bits in
* zbits_req. (For instance, 0b1 => 0b1, 0b101 => 0b111,
* 0b11010101 => 0b11111111).
*/
req_mask = zbits_req;
req_mask |= req_mask >> 1;
req_mask |= req_mask >> 2;
req_mask |= req_mask >> 4;
req_mask |= req_mask >> 8;
req_mask |= req_mask >> 16;
#if DNS_RPZ_MAX_ZONES > 32
req_mask |= req_mask >> 32;
#endif
/*
* There's no point in skipping recursion for a later
* zone if it is required in a previous zone.
*/
if ((zbits_notreq & req_mask) == 0) {
mask = 0;
goto set;
}
/*
* This bit arithmetic creates a mask of zones in which
* it is okay to skip recursion. After the first zone
* that has to wait for recursion, all the others have
* to wait as well, so we want to create a mask in which
* all the trailing zeroes in zbits_req are are 1, and
* more significant bits are 0. (For instance,
* 0x0700 => 0x00ff, 0x0007 => 0x0000)
*/
mask = ~(zbits_req | ((~zbits_req) + 1));
/*
* As mentioned in (2) above, the zone corresponding to
* the least significant zero could have its CLIENT-IP
* and QNAME policies checked before recursion, if it
* has any of those policies. So if it does, we
* can set its 0 to 1.
*
* Locate the least significant 0 bit in the mask (for
* instance, 0xff => 0x100)...
*/
mask2 = (mask << 1) & ~mask;
/*
* Also set the bit for zone 0, because if it's in
* zbits_notreq then it's definitely okay to attempt to
* skip recursion for zone 0...
*/
mask2 |= 1;
/* Clear any bits *not* in zbits_notreq... */
mask2 &= zbits_notreq;
/* And merge the result into the skip-recursion mask */
mask |= mask2;
}
set:
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ, DNS_LOGMODULE_RBTDB,
DNS_RPZ_DEBUG_QUIET,
"computed RPZ qname_skip_recurse mask=0x%llx",
(isc_uint64_t) mask);
rpzs->have.qname_skip_recurse = mask;
}
static void
adj_trigger_cnt(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num,
dns_rpz_type_t rpz_type,
const dns_rpz_cidr_key_t *tgt_ip, dns_rpz_prefix_t tgt_prefix,
isc_boolean_t inc)
{
dns_rpz_trigger_counter_t *cnt;
dns_rpz_zbits_t *have;
switch (rpz_type) {
case DNS_RPZ_TYPE_CLIENT_IP:
REQUIRE(tgt_ip != NULL);
if (KEY_IS_IPV4(tgt_prefix, tgt_ip)) {
cnt = &rpzs->triggers[rpz_num].client_ipv4;
have = &rpzs->have.client_ipv4;
} else {
cnt = &rpzs->triggers[rpz_num].client_ipv6;
have = &rpzs->have.client_ipv6;
}
break;
case DNS_RPZ_TYPE_QNAME:
cnt = &rpzs->triggers[rpz_num].qname;
have = &rpzs->have.qname;
break;
case DNS_RPZ_TYPE_IP:
REQUIRE(tgt_ip != NULL);
if (KEY_IS_IPV4(tgt_prefix, tgt_ip)) {
cnt = &rpzs->triggers[rpz_num].ipv4;
have = &rpzs->have.ipv4;
} else {
cnt = &rpzs->triggers[rpz_num].ipv6;
have = &rpzs->have.ipv6;
}
break;
case DNS_RPZ_TYPE_NSDNAME:
cnt = &rpzs->triggers[rpz_num].nsdname;
have = &rpzs->have.nsdname;
break;
case DNS_RPZ_TYPE_NSIP:
REQUIRE(tgt_ip != NULL);
if (KEY_IS_IPV4(tgt_prefix, tgt_ip)) {
cnt = &rpzs->triggers[rpz_num].nsipv4;
have = &rpzs->have.nsipv4;
} else {
cnt = &rpzs->triggers[rpz_num].nsipv6;
have = &rpzs->have.nsipv6;
}
break;
default:
INSIST(0);
}
if (inc) {
if (++*cnt == 1U) {
*have |= DNS_RPZ_ZBIT(rpz_num);
fix_qname_skip_recurse(rpzs);
}
} else {
REQUIRE(*cnt != 0U);
if (--*cnt == 0U) {
*have &= ~DNS_RPZ_ZBIT(rpz_num);
fix_qname_skip_recurse(rpzs);
}
}
}
static dns_rpz_cidr_node_t *
new_node(dns_rpz_zones_t *rpzs,
const dns_rpz_cidr_key_t *ip, dns_rpz_prefix_t prefix,
const dns_rpz_cidr_node_t *child)
{
dns_rpz_cidr_node_t *node;
int i, words, wlen;
node = isc_mem_get(rpzs->mctx, sizeof(*node));
if (node == NULL)
return (NULL);
memset(node, 0, sizeof(*node));
if (child != NULL)
node->sum = child->sum;
node->prefix = prefix;
words = prefix / DNS_RPZ_CIDR_WORD_BITS;
wlen = prefix % DNS_RPZ_CIDR_WORD_BITS;
i = 0;
while (i < words) {
node->ip.w[i] = ip->w[i];
++i;
}
if (wlen != 0) {
node->ip.w[i] = ip->w[i] & DNS_RPZ_WORD_MASK(wlen);
++i;
}
while (i < DNS_RPZ_CIDR_WORDS)
node->ip.w[i++] = 0;
return (node);
}
static void
badname(int level, dns_name_t *name, const char *str1, const char *str2) {
char namebuf[DNS_NAME_FORMATSIZE];
/*
* bin/tests/system/rpz/tests.sh looks for "invalid rpz".
*/
if (level < DNS_RPZ_DEBUG_QUIET &&
isc_log_wouldlog(dns_lctx, level)) {
dns_name_format(name, namebuf, sizeof(namebuf));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
DNS_LOGMODULE_RBTDB, level,
"invalid rpz IP address \"%s\"%s%s",
namebuf, str1, str2);
}
}
/*
* Convert an IP address from radix tree binary (host byte order) to
* to its canonical response policy domain name without the origin of the
* policy zone.
*
* Generate a name for an IPv6 address that fits RFC 5952, except that
* our reversed format requires that when the length of the consecutive
* 16-bit 0 fields are equal (e.g., 1.0.0.1.0.0.db8.2001 corresponding
* to 2001:db8:0:0:1:0:0:1), we shorted the last instead of the first
* (e.g., 1.0.0.1.zz.db8.2001 corresponding to 2001:db8::1:0:0:1).
*/
static isc_result_t
ip2name(const dns_rpz_cidr_key_t *tgt_ip, dns_rpz_prefix_t tgt_prefix,
dns_name_t *base_name, dns_name_t *ip_name)
{
#ifndef INET6_ADDRSTRLEN
#define INET6_ADDRSTRLEN 46
#endif
int w[DNS_RPZ_CIDR_WORDS*2];
char str[1+8+1+INET6_ADDRSTRLEN+1];
isc_buffer_t buffer;
isc_result_t result;
int best_first, best_len, cur_first, cur_len;
int i, n, len;
if (KEY_IS_IPV4(tgt_prefix, tgt_ip)) {
len = snprintf(str, sizeof(str), "%d.%d.%d.%d.%d",
tgt_prefix - 96,
tgt_ip->w[3] & 0xff,
(tgt_ip->w[3]>>8) & 0xff,
(tgt_ip->w[3]>>16) & 0xff,
(tgt_ip->w[3]>>24) & 0xff);
if (len < 0 || len > (int)sizeof(str))
return (ISC_R_FAILURE);
} else {
len = snprintf(str, sizeof(str), "%d", tgt_prefix);
if (len == -1)
return (ISC_R_FAILURE);
for (i = 0; i < DNS_RPZ_CIDR_WORDS; i++) {
w[i*2+1] = ((tgt_ip->w[DNS_RPZ_CIDR_WORDS-1-i] >> 16)
& 0xffff);
w[i*2] = tgt_ip->w[DNS_RPZ_CIDR_WORDS-1-i] & 0xffff;
}
/*
* Find the start and length of the first longest sequence
* of zeros in the address.
*/
best_first = -1;
best_len = 0;
cur_first = -1;
cur_len = 0;
for (n = 0; n <=7; ++n) {
if (w[n] != 0) {
cur_len = 0;
cur_first = -1;
} else {
++cur_len;
if (cur_first < 0) {
cur_first = n;
} else if (cur_len >= best_len) {
best_first = cur_first;
best_len = cur_len;
}
}
}
for (n = 0; n <= 7; ++n) {
INSIST(len < (int)sizeof(str));
if (n == best_first) {
len += snprintf(str + len, sizeof(str) - len,
".zz");
n += best_len - 1;
} else {
len += snprintf(str + len, sizeof(str) - len,
".%x", w[n]);
}
}
}
isc_buffer_init(&buffer, str, sizeof(str));
isc_buffer_add(&buffer, len);
result = dns_name_fromtext(ip_name, &buffer, base_name, 0, NULL);
return (result);
}
/*
* Determine the type of a name in a response policy zone.
*/
static dns_rpz_type_t
type_from_name(dns_rpz_zone_t *rpz, dns_name_t *name) {
if (dns_name_issubdomain(name, &rpz->ip))
return (DNS_RPZ_TYPE_IP);
if (dns_name_issubdomain(name, &rpz->client_ip))
return (DNS_RPZ_TYPE_CLIENT_IP);
#ifdef ENABLE_RPZ_NSIP
if (dns_name_issubdomain(name, &rpz->nsip))
return (DNS_RPZ_TYPE_NSIP);
#endif
#ifdef ENABLE_RPZ_NSDNAME
if (dns_name_issubdomain(name, &rpz->nsdname))
return (DNS_RPZ_TYPE_NSDNAME);
#endif
return (DNS_RPZ_TYPE_QNAME);
}
/*
* Convert an IP address from canonical response policy domain name form
* to radix tree binary (host byte order) for adding or deleting IP or NSIP
* data.
*/
static isc_result_t
name2ipkey(int log_level,
const dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num,
dns_rpz_type_t rpz_type, dns_name_t *src_name,
dns_rpz_cidr_key_t *tgt_ip, dns_rpz_prefix_t *tgt_prefix,
dns_rpz_addr_zbits_t *new_set)
{
dns_rpz_zone_t *rpz;
char ip_str[DNS_NAME_FORMATSIZE];
char ip2_str[DNS_NAME_FORMATSIZE];
dns_offsets_t ip_name_offsets;
dns_fixedname_t ip_name2f;
dns_name_t ip_name, *ip_name2;
const char *prefix_str, *cp, *end;
char *cp2;
int ip_labels;
dns_rpz_prefix_t prefix;
unsigned long prefix_num, l;
isc_result_t result;
int i;
REQUIRE(rpzs != NULL && rpz_num < rpzs->p.num_zones);
rpz = rpzs->zones[rpz_num];
REQUIRE(rpz != NULL);
make_addr_set(new_set, DNS_RPZ_ZBIT(rpz_num), rpz_type);
ip_labels = dns_name_countlabels(src_name);
if (rpz_type == DNS_RPZ_TYPE_QNAME)
ip_labels -= dns_name_countlabels(&rpz->origin);
else
ip_labels -= dns_name_countlabels(&rpz->nsdname);
if (ip_labels < 2) {
badname(log_level, src_name, "; too short", "");
return (ISC_R_FAILURE);
}
dns_name_init(&ip_name, ip_name_offsets);
dns_name_getlabelsequence(src_name, 0, ip_labels, &ip_name);
/*
* Get text for the IP address
*/
dns_name_format(&ip_name, ip_str, sizeof(ip_str));
end = &ip_str[strlen(ip_str)+1];
prefix_str = ip_str;
prefix_num = strtoul(prefix_str, &cp2, 10);
if (*cp2 != '.') {
badname(log_level, src_name,
"; invalid leading prefix length", "");
return (ISC_R_FAILURE);
}
if (prefix_num < 1U || prefix_num > 128U) {
badname(log_level, src_name,
"; invalid prefix length of ", prefix_str);
return (ISC_R_FAILURE);
}
cp = cp2+1;
if (--ip_labels == 4 && !strchr(cp, 'z')) {
/*
* Convert an IPv4 address
* from the form "prefix.z.y.x.w"
*/
if (prefix_num > 32U) {
badname(log_level, src_name,
"; invalid IPv4 prefix length of ", prefix_str);
return (ISC_R_FAILURE);
}
prefix_num += 96;
*tgt_prefix = (dns_rpz_prefix_t)prefix_num;
tgt_ip->w[0] = 0;
tgt_ip->w[1] = 0;
tgt_ip->w[2] = ADDR_V4MAPPED;
tgt_ip->w[3] = 0;
for (i = 0; i < 32; i += 8) {
l = strtoul(cp, &cp2, 10);
if (l > 255U || (*cp2 != '.' && *cp2 != '\0')) {
if (*cp2 == '.')
*cp2 = '\0';
badname(log_level, src_name,
"; invalid IPv4 octet ", cp);
return (ISC_R_FAILURE);
}
tgt_ip->w[3] |= l << i;
cp = cp2 + 1;
}
} else {
/*
* Convert a text IPv6 address.
*/
*tgt_prefix = (dns_rpz_prefix_t)prefix_num;
for (i = 0;
ip_labels > 0 && i < DNS_RPZ_CIDR_WORDS * 2;
ip_labels--) {
if (cp[0] == 'z' && cp[1] == 'z' &&
(cp[2] == '.' || cp[2] == '\0') &&
i <= 6) {
do {
if ((i & 1) == 0)
tgt_ip->w[3-i/2] = 0;
++i;
} while (ip_labels + i <= 8);
cp += 3;
} else {
l = strtoul(cp, &cp2, 16);
if (l > 0xffffu ||
(*cp2 != '.' && *cp2 != '\0')) {
if (*cp2 == '.')
*cp2 = '\0';
badname(log_level, src_name,
"; invalid IPv6 word ", cp);
return (ISC_R_FAILURE);
}
if ((i & 1) == 0)
tgt_ip->w[3-i/2] = l;
else
tgt_ip->w[3-i/2] |= l << 16;
i++;
cp = cp2 + 1;
}
}
}
if (cp != end) {
badname(log_level, src_name, "", "");
return (ISC_R_FAILURE);
}
/*
* Check for 1s after the prefix length.
*/
prefix = (dns_rpz_prefix_t)prefix_num;
while (prefix < DNS_RPZ_CIDR_KEY_BITS) {
dns_rpz_cidr_word_t aword;
i = prefix % DNS_RPZ_CIDR_WORD_BITS;
aword = tgt_ip->w[prefix / DNS_RPZ_CIDR_WORD_BITS];
if ((aword & ~DNS_RPZ_WORD_MASK(i)) != 0) {
badname(log_level, src_name,
"; too small prefix length of ", prefix_str);
return (ISC_R_FAILURE);
}
prefix -= i;
prefix += DNS_RPZ_CIDR_WORD_BITS;
}
/*
* Complain about bad names but be generous and accept them.
*/
if (log_level < DNS_RPZ_DEBUG_QUIET &&
isc_log_wouldlog(dns_lctx, log_level)) {
/*
* Convert the address back to a canonical domain name
* to ensure that the original name is in canonical form.
*/
dns_fixedname_init(&ip_name2f);
ip_name2 = dns_fixedname_name(&ip_name2f);
result = ip2name(tgt_ip, (dns_rpz_prefix_t)prefix_num,
NULL, ip_name2);
if (result != ISC_R_SUCCESS ||
!dns_name_equal(&ip_name, ip_name2)) {
dns_name_format(ip_name2, ip2_str, sizeof(ip2_str));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
DNS_LOGMODULE_RBTDB, log_level,
"rpz IP address \"%s\""
" is not the canonical \"%s\"",
ip_str, ip2_str);
}
}
return (ISC_R_SUCCESS);
}
/*
* Get trigger name and data bits for adding or deleting summary NSDNAME
* or QNAME data.
*/
static void
name2data(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num,
dns_rpz_type_t rpz_type, const dns_name_t *src_name,
dns_name_t *trig_name, dns_rpz_nm_data_t *new_data)
{
dns_rpz_zone_t *rpz;
dns_offsets_t tmp_name_offsets;
dns_name_t tmp_name;
unsigned int prefix_len, n;
REQUIRE(rpzs != NULL && rpz_num < rpzs->p.num_zones);
rpz = rpzs->zones[rpz_num];
REQUIRE(rpz != NULL);
/*
* Handle wildcards by putting only the parent into the
* summary RBT. The summary database only causes a check of the
* real policy zone where wildcards will be handled.
*/
if (dns_name_iswildcard(src_name)) {
prefix_len = 1;
memset(&new_data->set, 0, sizeof(new_data->set));
make_nm_set(&new_data->wild, rpz_num, rpz_type);
} else {
prefix_len = 0;
make_nm_set(&new_data->set, rpz_num, rpz_type);
memset(&new_data->wild, 0, sizeof(new_data->wild));
}
dns_name_init(&tmp_name, tmp_name_offsets);
n = dns_name_countlabels(src_name);
n -= prefix_len;
if (rpz_type == DNS_RPZ_TYPE_QNAME)
n -= dns_name_countlabels(&rpz->origin);
else
n -= dns_name_countlabels(&rpz->nsdname);
dns_name_getlabelsequence(src_name, prefix_len, n, &tmp_name);
(void)dns_name_concatenate(&tmp_name, dns_rootname, trig_name, NULL);
}
#ifndef HAVE_BUILTIN_CLZ
/**
* \brief Count Leading Zeros: Find the location of the left-most set
* bit.
*/
static inline unsigned int
clz(dns_rpz_cidr_word_t w) {
unsigned int bit;
bit = DNS_RPZ_CIDR_WORD_BITS-1;
if ((w & 0xffff0000) != 0) {
w >>= 16;
bit -= 16;
}
if ((w & 0xff00) != 0) {
w >>= 8;
bit -= 8;
}
if ((w & 0xf0) != 0) {
w >>= 4;
bit -= 4;
}
if ((w & 0xc) != 0) {
w >>= 2;
bit -= 2;
}
if ((w & 2) != 0)
--bit;
return (bit);
}
#endif
/*
* Find the first differing bit in two keys (IP addresses).
*/
static int
diff_keys(const dns_rpz_cidr_key_t *key1, dns_rpz_prefix_t prefix1,
const dns_rpz_cidr_key_t *key2, dns_rpz_prefix_t prefix2)
{
dns_rpz_cidr_word_t delta;
dns_rpz_prefix_t maxbit, bit;
int i;
bit = 0;
maxbit = ISC_MIN(prefix1, prefix2);
/*
* find the first differing words
*/
for (i = 0; bit < maxbit; i++, bit += DNS_RPZ_CIDR_WORD_BITS) {
delta = key1->w[i] ^ key2->w[i];
if (ISC_UNLIKELY(delta != 0)) {
#ifdef HAVE_BUILTIN_CLZ
bit += __builtin_clz(delta);
#else
bit += clz(delta);
#endif
break;
}
}
return (ISC_MIN(bit, maxbit));
}
/*
* Given a hit while searching the radix trees,
* clear all bits for higher numbered zones.
*/
static inline dns_rpz_zbits_t
trim_zbits(dns_rpz_zbits_t zbits, dns_rpz_zbits_t found) {
dns_rpz_zbits_t x;
/*
* Isolate the first or smallest numbered hit bit.
* Make a mask of that bit and all smaller numbered bits.
*/
x = zbits & found;
x &= (~x + 1);
x = (x << 1) - 1;
return (zbits &= x);
}
/*
* Search a radix tree for an IP address for ordinary lookup
* or for a CIDR block adding or deleting an entry
*
* Return ISC_R_SUCCESS, DNS_R_PARTIALMATCH, ISC_R_NOTFOUND,
* and *found=longest match node
* or with create==ISC_TRUE, ISC_R_EXISTS or ISC_R_NOMEMORY
*/
static isc_result_t
search(dns_rpz_zones_t *rpzs,
const dns_rpz_cidr_key_t *tgt_ip, dns_rpz_prefix_t tgt_prefix,
const dns_rpz_addr_zbits_t *tgt_set, isc_boolean_t create,
dns_rpz_cidr_node_t **found)
{
dns_rpz_cidr_node_t *cur, *parent, *child, *new_parent, *sibling;
dns_rpz_addr_zbits_t set;
int cur_num, child_num;
dns_rpz_prefix_t dbit;
isc_result_t find_result;
set = *tgt_set;
find_result = ISC_R_NOTFOUND;
*found = NULL;
cur = rpzs->cidr;
parent = NULL;
cur_num = 0;
for (;;) {
if (cur == NULL) {
/*
* No child so we cannot go down.
* Quit with whatever we already found
* or add the target as a child of the current parent.
*/
if (!create)
return (find_result);
child = new_node(rpzs, tgt_ip, tgt_prefix, NULL);
if (child == NULL)
return (ISC_R_NOMEMORY);
if (parent == NULL)
rpzs->cidr = child;
else
parent->child[cur_num] = child;
child->parent = parent;
child->set.client_ip |= tgt_set->client_ip;
child->set.ip |= tgt_set->ip;
child->set.nsip |= tgt_set->nsip;
set_sum_pair(child);
*found = child;
return (ISC_R_SUCCESS);
}
if ((cur->sum.client_ip & set.client_ip) == 0 &&
(cur->sum.ip & set.ip) == 0 &&
(cur->sum.nsip & set.nsip) == 0) {
/*
* This node has no relevant data
* and is in none of the target trees.
* Pretend it does not exist if we are not adding.
*
* If we are adding, continue down to eventually add
* a node and mark/put this node in the correct tree.
*/
if (!create)
return (find_result);
}
dbit = diff_keys(tgt_ip, tgt_prefix, &cur->ip, cur->prefix);
/*
* dbit <= tgt_prefix and dbit <= cur->prefix always.
* We are finished searching if we matched all of the target.
*/
if (dbit == tgt_prefix) {
if (tgt_prefix == cur->prefix) {
/*
* The node's key matches the target exactly.
*/
if ((cur->set.client_ip & set.client_ip) != 0 ||
(cur->set.ip & set.ip) != 0 ||
(cur->set.nsip & set.nsip) != 0) {
/*
* It is the answer if it has data.
*/
*found = cur;
if (create) {
find_result = ISC_R_EXISTS;
} else {
find_result = ISC_R_SUCCESS;
}
} else if (create) {
/*
* The node lacked relevant data,
* but will have it now.
*/
cur->set.client_ip |= tgt_set->client_ip;
cur->set.ip |= tgt_set->ip;
cur->set.nsip |= tgt_set->nsip;
set_sum_pair(cur);
*found = cur;
find_result = ISC_R_SUCCESS;
}
return (find_result);
}
/*
* We know tgt_prefix < cur->prefix which means that
* the target is shorter than the current node.
* Add the target as the current node's parent.
*/
if (!create)
return (find_result);
new_parent = new_node(rpzs, tgt_ip, tgt_prefix, cur);
if (new_parent == NULL)
return (ISC_R_NOMEMORY);
new_parent->parent = parent;
if (parent == NULL)
rpzs->cidr = new_parent;
else
parent->child[cur_num] = new_parent;
child_num = DNS_RPZ_IP_BIT(&cur->ip, tgt_prefix);
new_parent->child[child_num] = cur;
cur->parent = new_parent;
new_parent->set = *tgt_set;
set_sum_pair(new_parent);
*found = new_parent;
return (ISC_R_SUCCESS);
}
if (dbit == cur->prefix) {
if ((cur->set.client_ip & set.client_ip) != 0 ||
(cur->set.ip & set.ip) != 0 ||
(cur->set.nsip & set.nsip) != 0) {
/*
* We have a partial match between of all of the
* current node but only part of the target.
* Continue searching for other hits in the
* same or lower numbered trees.
*/
find_result = DNS_R_PARTIALMATCH;
*found = cur;
set.client_ip = trim_zbits(set.client_ip,
cur->set.client_ip);
set.ip = trim_zbits(set.ip,
cur->set.ip);
set.nsip = trim_zbits(set.nsip,
cur->set.nsip);
}
parent = cur;
cur_num = DNS_RPZ_IP_BIT(tgt_ip, dbit);
cur = cur->child[cur_num];
continue;
}
/*
* dbit < tgt_prefix and dbit < cur->prefix,
* so we failed to match both the target and the current node.
* Insert a fork of a parent above the current node and
* add the target as a sibling of the current node
*/
if (!create)
return (find_result);
sibling = new_node(rpzs, tgt_ip, tgt_prefix, NULL);
if (sibling == NULL)
return (ISC_R_NOMEMORY);
new_parent = new_node(rpzs, tgt_ip, dbit, cur);
if (new_parent == NULL) {
isc_mem_put(rpzs->mctx, sibling, sizeof(*sibling));
return (ISC_R_NOMEMORY);
}
new_parent->parent = parent;
if (parent == NULL)
rpzs->cidr = new_parent;
else
parent->child[cur_num] = new_parent;
child_num = DNS_RPZ_IP_BIT(tgt_ip, dbit);
new_parent->child[child_num] = sibling;
new_parent->child[1-child_num] = cur;
cur->parent = new_parent;
sibling->parent = new_parent;
sibling->set = *tgt_set;
set_sum_pair(sibling);
*found = sibling;
return (ISC_R_SUCCESS);
}
}
/*
* Add an IP address to the radix tree.
*/
static isc_result_t
add_cidr(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num,
dns_rpz_type_t rpz_type, dns_name_t *src_name)
{
dns_rpz_cidr_key_t tgt_ip;
dns_rpz_prefix_t tgt_prefix;
dns_rpz_addr_zbits_t set;
dns_rpz_cidr_node_t *found;
isc_result_t result;
result = name2ipkey(DNS_RPZ_ERROR_LEVEL, rpzs, rpz_num, rpz_type,
src_name, &tgt_ip, &tgt_prefix, &set);
/*
* Log complaints about bad owner names but let the zone load.
*/
if (result != ISC_R_SUCCESS)
return (ISC_R_SUCCESS);
result = search(rpzs, &tgt_ip, tgt_prefix, &set, ISC_TRUE, &found);
if (result != ISC_R_SUCCESS) {
char namebuf[DNS_NAME_FORMATSIZE];
/*
* Do not worry if the radix tree already exists,
* because diff_apply() likes to add nodes before deleting.
*/
if (result == ISC_R_EXISTS)
return (ISC_R_SUCCESS);
/*
* bin/tests/system/rpz/tests.sh looks for "rpz.*failed".
*/
dns_name_format(src_name, namebuf, sizeof(namebuf));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
DNS_LOGMODULE_RBTDB, DNS_RPZ_ERROR_LEVEL,
"rpz add_cidr(%s) failed: %s",
namebuf, isc_result_totext(result));
return (result);
}
adj_trigger_cnt(rpzs, rpz_num, rpz_type, &tgt_ip, tgt_prefix, ISC_TRUE);
return (result);
}
static isc_result_t
add_nm(dns_rpz_zones_t *rpzs, dns_name_t *trig_name,
const dns_rpz_nm_data_t *new_data)
{
dns_rbtnode_t *nmnode;
dns_rpz_nm_data_t *nm_data;
isc_result_t result;
nmnode = NULL;
result = dns_rbt_addnode(rpzs->rbt, trig_name, &nmnode);
switch (result) {
case ISC_R_SUCCESS:
case ISC_R_EXISTS:
nm_data = nmnode->data;
if (nm_data == NULL) {
nm_data = isc_mem_get(rpzs->mctx, sizeof(*nm_data));
if (nm_data == NULL)
return (ISC_R_NOMEMORY);
*nm_data = *new_data;
nmnode->data = nm_data;
return (ISC_R_SUCCESS);
}
break;
default:
return (result);
}
/*
* Do not count bits that are already present
*/
if ((nm_data->set.qname & new_data->set.qname) != 0 ||
(nm_data->set.ns & new_data->set.ns) != 0 ||
(nm_data->wild.qname & new_data->wild.qname) != 0 ||
(nm_data->wild.ns & new_data->wild.ns) != 0)
return (ISC_R_EXISTS);
nm_data->set.qname |= new_data->set.qname;
nm_data->set.ns |= new_data->set.ns;
nm_data->wild.qname |= new_data->wild.qname;
nm_data->wild.ns |= new_data->wild.ns;
return (ISC_R_SUCCESS);
}
static isc_result_t
add_name(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num,
dns_rpz_type_t rpz_type, dns_name_t *src_name)
{
dns_rpz_nm_data_t new_data;
dns_fixedname_t trig_namef;
dns_name_t *trig_name;
isc_result_t result;
/*
* We need a summary database of names even with 1 policy zone,
* because wildcard triggers are handled differently.
*/
dns_fixedname_init(&trig_namef);
trig_name = dns_fixedname_name(&trig_namef);
name2data(rpzs, rpz_num, rpz_type, src_name, trig_name, &new_data);
result = add_nm(rpzs, trig_name, &new_data);
/*
* Do not worry if the node already exists,
* because diff_apply() likes to add nodes before deleting.
*/
if (result == ISC_R_EXISTS)
return (ISC_R_SUCCESS);
if (result == ISC_R_SUCCESS)
adj_trigger_cnt(rpzs, rpz_num, rpz_type, NULL, 0, ISC_TRUE);
return (result);
}
/*
* Callback to free the data for a node in the summary RBT database.
*/
static void
rpz_node_deleter(void *nm_data, void *mctx) {
isc_mem_put(mctx, nm_data, sizeof(dns_rpz_nm_data_t));
}
/*
* Get ready for a new set of policy zones for a view.
*/
isc_result_t
dns_rpz_new_zones(dns_rpz_zones_t **rpzsp, isc_mem_t *mctx) {
dns_rpz_zones_t *new;
isc_result_t result;
REQUIRE(rpzsp != NULL && *rpzsp == NULL);
*rpzsp = NULL;
new = isc_mem_get(mctx, sizeof(*new));
if (new == NULL)
return (ISC_R_NOMEMORY);
memset(new, 0, sizeof(*new));
result = isc_rwlock_init(&new->search_lock, 0, 0);
if (result != ISC_R_SUCCESS) {
isc_mem_put(mctx, new, sizeof(*new));
return (result);
}
result = isc_mutex_init(&new->maint_lock);
if (result != ISC_R_SUCCESS) {
isc_rwlock_destroy(&new->search_lock);
isc_mem_put(mctx, new, sizeof(*new));
return (result);
}
result = isc_refcount_init(&new->refs, 1);
if (result != ISC_R_SUCCESS) {
DESTROYLOCK(&new->maint_lock);
isc_rwlock_destroy(&new->search_lock);
isc_mem_put(mctx, new, sizeof(*new));
return (result);
}
result = dns_rbt_create(mctx, rpz_node_deleter, mctx, &new->rbt);
if (result != ISC_R_SUCCESS) {
isc_refcount_decrement(&new->refs, NULL);
isc_refcount_destroy(&new->refs);
DESTROYLOCK(&new->maint_lock);
isc_rwlock_destroy(&new->search_lock);
isc_mem_put(mctx, new, sizeof(*new));
return (result);
}
isc_mem_attach(mctx, &new->mctx);
*rpzsp = new;
return (ISC_R_SUCCESS);
}
/*
* Free the radix tree of a response policy database.
*/
static void
cidr_free(dns_rpz_zones_t *rpzs) {
dns_rpz_cidr_node_t *cur, *child, *parent;
cur = rpzs->cidr;
while (cur != NULL) {
/* Depth first. */
child = cur->child[0];
if (child != NULL) {
cur = child;
continue;
}
child = cur->child[1];
if (child != NULL) {
cur = child;
continue;
}
/* Delete this leaf and go up. */
parent = cur->parent;
if (parent == NULL)
rpzs->cidr = NULL;
else
parent->child[parent->child[1] == cur] = NULL;
isc_mem_put(rpzs->mctx, cur, sizeof(*cur));
cur = parent;
}
}
/*
* Discard a response policy zone blob
* before discarding the overall rpz structure.
*/
static void
rpz_detach(dns_rpz_zone_t **rpzp, dns_rpz_zones_t *rpzs) {
dns_rpz_zone_t *rpz;
unsigned int refs;
rpz = *rpzp;
*rpzp = NULL;
isc_refcount_decrement(&rpz->refs, &refs);
if (refs != 0)
return;
isc_refcount_destroy(&rpz->refs);
if (dns_name_dynamic(&rpz->origin))
dns_name_free(&rpz->origin, rpzs->mctx);
if (dns_name_dynamic(&rpz->client_ip))
dns_name_free(&rpz->client_ip, rpzs->mctx);
if (dns_name_dynamic(&rpz->ip))
dns_name_free(&rpz->ip, rpzs->mctx);
if (dns_name_dynamic(&rpz->nsdname))
dns_name_free(&rpz->nsdname, rpzs->mctx);
if (dns_name_dynamic(&rpz->nsip))
dns_name_free(&rpz->nsip, rpzs->mctx);
if (dns_name_dynamic(&rpz->passthru))
dns_name_free(&rpz->passthru, rpzs->mctx);
if (dns_name_dynamic(&rpz->drop))
dns_name_free(&rpz->drop, rpzs->mctx);
if (dns_name_dynamic(&rpz->tcp_only))
dns_name_free(&rpz->tcp_only, rpzs->mctx);
if (dns_name_dynamic(&rpz->cname))
dns_name_free(&rpz->cname, rpzs->mctx);
isc_mem_put(rpzs->mctx, rpz, sizeof(*rpz));
}
void
dns_rpz_attach_rpzs(dns_rpz_zones_t *rpzs, dns_rpz_zones_t **rpzsp) {
REQUIRE(rpzsp != NULL && *rpzsp == NULL);
isc_refcount_increment(&rpzs->refs, NULL);
*rpzsp = rpzs;
}
/*
* Forget a view's policy zones.
*/
void
dns_rpz_detach_rpzs(dns_rpz_zones_t **rpzsp) {
dns_rpz_zones_t *rpzs;
dns_rpz_zone_t *rpz;
dns_rpz_num_t rpz_num;
unsigned int refs;
REQUIRE(rpzsp != NULL);
rpzs = *rpzsp;
REQUIRE(rpzs != NULL);
*rpzsp = NULL;
isc_refcount_decrement(&rpzs->refs, &refs);
if (refs > 0)
return;
/*
* Forget the last of view's rpz machinery after the last
* reference.
*/
for (rpz_num = 0; rpz_num < DNS_RPZ_MAX_ZONES; ++rpz_num) {
rpz = rpzs->zones[rpz_num];
rpzs->zones[rpz_num] = NULL;
if (rpz != NULL)
rpz_detach(&rpz, rpzs);
}
cidr_free(rpzs);
dns_rbt_destroy(&rpzs->rbt);
DESTROYLOCK(&rpzs->maint_lock);
isc_rwlock_destroy(&rpzs->search_lock);
isc_refcount_destroy(&rpzs->refs);
isc_mem_putanddetach(&rpzs->mctx, rpzs, sizeof(*rpzs));
}
/*
* Create empty summary database to load one zone.
* The RBTDB write tree lock must be held.
*/
isc_result_t
dns_rpz_beginload(dns_rpz_zones_t **load_rpzsp,
dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num)
{
dns_rpz_zones_t *load_rpzs;
dns_rpz_zone_t *rpz;
dns_rpz_zbits_t tgt;
isc_result_t result;
REQUIRE(rpz_num < rpzs->p.num_zones);
rpz = rpzs->zones[rpz_num];
REQUIRE(rpz != NULL);
/*
* When reloading a zone, there are usually records among the summary
* data for the zone. Some of those records might be deleted by the
* reloaded zone data. To deal with that case:
* reload the new zone data into a new blank summary database
* if the reload fails, discard the new summary database
* if the new zone data is acceptable, copy the records for the
* other zones into the new summary CIDR and RBT databases
* and replace the old summary databases with the new, and
* correct the triggers and have values for the updated
* zone.
*
* At the first attempt to load a zone, there is no summary data
* for the zone and so no records that need to be deleted.
* This is also the most common case of policy zone loading.
* Most policy zone maintenance should be by incremental changes
* and so by the addition and deletion of individual records.
* Detect that case and load records the first time into the
* operational summary database
*/
tgt = DNS_RPZ_ZBIT(rpz_num);
LOCK(&rpzs->maint_lock);
RWLOCK(&rpzs->search_lock, isc_rwlocktype_write);
if ((rpzs->load_begun & tgt) == 0) {
/*
* There is no existing version of the target zone.
*/
rpzs->load_begun |= tgt;
dns_rpz_attach_rpzs(rpzs, load_rpzsp);
} else {
/*
* Setup the new RPZ struct with empty summary trees.
*/
result = dns_rpz_new_zones(load_rpzsp, rpzs->mctx);
if (result != ISC_R_SUCCESS)
return (result);
load_rpzs = *load_rpzsp;
/*
* Initialize some members so that dns_rpz_add() works.
*/
load_rpzs->p.num_zones = rpzs->p.num_zones;
memset(&load_rpzs->triggers, 0, sizeof(load_rpzs->triggers));
load_rpzs->zones[rpz_num] = rpz;
isc_refcount_increment(&rpz->refs, NULL);
}
RWUNLOCK(&rpzs->search_lock, isc_rwlocktype_write);
UNLOCK(&rpzs->maint_lock);
return (ISC_R_SUCCESS);
}
/*
* This function updates "have" bits and also the qname_skip_recurse
* mask. It must be called when holding a write lock on rpzs->search_lock.
*/
static void
fix_triggers(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num) {
dns_rpz_num_t n;
dns_rpz_triggers_t old_totals;
dns_rpz_zbits_t zbit;
char namebuf[DNS_NAME_FORMATSIZE];
/*
* rpzs->total_triggers is only used to log a message below.
*/
memmove(&old_totals, &rpzs->total_triggers, sizeof(old_totals));
memset(&rpzs->total_triggers, 0, sizeof(rpzs->total_triggers));
#define SET_TRIG(n, zbit, type) \
if (rpzs->triggers[n].type == 0U) { \
rpzs->have.type &= ~zbit; \
} else { \
rpzs->total_triggers.type += rpzs->triggers[n].type; \
rpzs->have.type |= zbit; \
}
for (n = 0; n < rpzs->p.num_zones; ++n) {
zbit = DNS_RPZ_ZBIT(n);
SET_TRIG(n, zbit, client_ipv4);
SET_TRIG(n, zbit, client_ipv6);
SET_TRIG(n, zbit, qname);
SET_TRIG(n, zbit, ipv4);
SET_TRIG(n, zbit, ipv6);
SET_TRIG(n, zbit, nsdname);
SET_TRIG(n, zbit, nsipv4);
SET_TRIG(n, zbit, nsipv6);
}
#undef SET_TRIG
fix_qname_skip_recurse(rpzs);
dns_name_format(&rpzs->zones[rpz_num]->origin,
namebuf, sizeof(namebuf));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
DNS_LOGMODULE_RBTDB, DNS_RPZ_INFO_LEVEL,
"(re)loading policy zone '%s' changed from"
" %lu to %lu qname, %lu to %lu nsdname,"
" %lu to %lu IP, %lu to %lu NSIP,"
" %lu to %lu CLIENTIP entries",
namebuf,
(unsigned long) old_totals.qname,
(unsigned long) rpzs->total_triggers.qname,
(unsigned long) old_totals.nsdname,
(unsigned long) rpzs->total_triggers.nsdname,
(unsigned long) old_totals.ipv4 + old_totals.ipv6,
(unsigned long) (rpzs->total_triggers.ipv4 +
rpzs->total_triggers.ipv6),
(unsigned long) old_totals.nsipv4 + old_totals.nsipv6,
(unsigned long) (rpzs->total_triggers.nsipv4 +
rpzs->total_triggers.nsipv6),
(unsigned long) old_totals.client_ipv4 +
old_totals.client_ipv6,
(unsigned long) (rpzs->total_triggers.client_ipv4 +
rpzs->total_triggers.client_ipv6));
}
/*
* Finish loading one zone. This function is called during a commit when
* a RPZ zone loading is complete. The RBTDB write tree lock must be
* held.
*
* Here, rpzs is a pointer to the view's common rpzs
* structure. *load_rpzsp is a rpzs structure that is local to the
* RBTDB, which is used during a single zone's load.
*
* During the zone load, i.e., between dns_rpz_beginload() and
* dns_rpz_ready(), only the zone that is being loaded updates
* *load_rpzsp. These updates in the summary databases inside load_rpzsp
* are made only for the rpz_num (and corresponding bit) of that
* zone. Nothing else reads or writes *load_rpzsp. The view's common
* rpzs is used during this time for queries.
*
* When zone loading is complete and we arrive here, the parts of the
* summary databases (CIDR and nsdname+qname RBT trees) from the view's
* common rpzs struct have to be merged into the summary databases of
* *load_rpzsp, as the summary databases of the view's common rpzs
* struct may have changed during the time the zone was being loaded.
*
* The function below carries out the merge. During the merge, it holds
* the maint_lock of the view's common rpzs struct so that it is not
* updated while the merging is taking place.
*
* After the merging is carried out, *load_rpzsp contains the most
* current state of the rpzs structure, i.e., the summary trees contain
* data for the new zone that was just loaded, as well as all other
* zones.
*
* Pointers to the summary databases of *load_rpzsp (CIDR and
* nsdname+qname RBT trees) are then swapped into the view's common rpz
* struct, so that the query path can continue using it. During the
* swap, the search_lock of the view's common rpz struct is acquired so
* that queries are paused while this swap occurs.
*
* The trigger counts for the new zone are also copied into the view's
* common rpz struct, and some other summary counts and masks are
* updated.
*/
isc_result_t
dns_rpz_ready(dns_rpz_zones_t *rpzs,
dns_rpz_zones_t **load_rpzsp, dns_rpz_num_t rpz_num)
{
dns_rpz_zones_t *load_rpzs;
const dns_rpz_cidr_node_t *cnode, *next_cnode, *parent_cnode;
dns_rpz_cidr_node_t *found;
dns_rpz_zbits_t new_bit;
dns_rpz_addr_zbits_t new_ip;
dns_rbt_t *rbt;
dns_rbtnodechain_t chain;
dns_rbtnode_t *nmnode;
dns_rpz_nm_data_t *nm_data, new_data;
dns_fixedname_t labelf, originf, namef;
dns_name_t *label, *origin, *name;
isc_result_t result;
INSIST(rpzs != NULL);
LOCK(&rpzs->maint_lock);
load_rpzs = *load_rpzsp;
INSIST(load_rpzs != NULL);
if (load_rpzs == rpzs) {
/*
* This is a successful initial zone loading, perhaps
* for a new instance of a view.
*/
RWLOCK(&rpzs->search_lock, isc_rwlocktype_write);
fix_triggers(rpzs, rpz_num);
RWUNLOCK(&rpzs->search_lock, isc_rwlocktype_write);
UNLOCK(&rpzs->maint_lock);
dns_rpz_detach_rpzs(load_rpzsp);
return (ISC_R_SUCCESS);
}
LOCK(&load_rpzs->maint_lock);
RWLOCK(&load_rpzs->search_lock, isc_rwlocktype_write);
/*
* Unless there is only one policy zone, copy the other policy zones
* from the old policy structure to the new summary databases.
*/
if (rpzs->p.num_zones > 1) {
new_bit = ~DNS_RPZ_ZBIT(rpz_num);
/*
* Copy to the radix tree.
*/
for (cnode = rpzs->cidr; cnode != NULL; cnode = next_cnode) {
new_ip.ip = cnode->set.ip & new_bit;
new_ip.client_ip = cnode->set.client_ip & new_bit;
new_ip.nsip = cnode->set.nsip & new_bit;
if (new_ip.client_ip != 0 ||
new_ip.ip != 0 ||
new_ip.nsip != 0) {
result = search(load_rpzs,
&cnode->ip, cnode->prefix,
&new_ip, ISC_TRUE, &found);
if (result == ISC_R_NOMEMORY)
goto unlock_and_detach;
INSIST(result == ISC_R_SUCCESS);
}
/*
* Do down and to the left as far as possible.
*/
next_cnode = cnode->child[0];
if (next_cnode != NULL)
continue;
/*
* Go up until we find a branch to the right where
* we previously took the branch to the left.
*/
for (;;) {
parent_cnode = cnode->parent;
if (parent_cnode == NULL)
break;
if (parent_cnode->child[0] == cnode) {
next_cnode = parent_cnode->child[1];
if (next_cnode != NULL)
break;
}
cnode = parent_cnode;
}
}
/*
* Copy to the summary RBT.
*/
dns_fixedname_init(&namef);
name = dns_fixedname_name(&namef);
dns_fixedname_init(&labelf);
label = dns_fixedname_name(&labelf);
dns_fixedname_init(&originf);
origin = dns_fixedname_name(&originf);
dns_rbtnodechain_init(&chain, NULL);
result = dns_rbtnodechain_first(&chain, rpzs->rbt, NULL, NULL);
while (result == DNS_R_NEWORIGIN || result == ISC_R_SUCCESS) {
result = dns_rbtnodechain_current(&chain, label, origin,
&nmnode);
INSIST(result == ISC_R_SUCCESS);
nm_data = nmnode->data;
if (nm_data != NULL) {
new_data.set.qname = (nm_data->set.qname &
new_bit);
new_data.set.ns = nm_data->set.ns & new_bit;
new_data.wild.qname = (nm_data->wild.qname &
new_bit);
new_data.wild.ns = nm_data->wild.ns & new_bit;
if (new_data.set.qname != 0 ||
new_data.set.ns != 0 ||
new_data.wild.qname != 0 ||
new_data.wild.ns != 0) {
result = dns_name_concatenate(label,
origin, name, NULL);
INSIST(result == ISC_R_SUCCESS);
result = add_nm(load_rpzs, name,
&new_data);
if (result != ISC_R_SUCCESS)
goto unlock_and_detach;
}
}
result = dns_rbtnodechain_next(&chain, NULL, NULL);
}
if (result != ISC_R_NOMORE && result != ISC_R_NOTFOUND) {
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
DNS_LOGMODULE_RBTDB, DNS_RPZ_ERROR_LEVEL,
"dns_rpz_ready(): unexpected %s",
isc_result_totext(result));
goto unlock_and_detach;
}
}
/*
* Exchange the summary databases.
*/
RWLOCK(&rpzs->search_lock, isc_rwlocktype_write);
rpzs->triggers[rpz_num] = load_rpzs->triggers[rpz_num];
fix_triggers(rpzs, rpz_num);
found = rpzs->cidr;
rpzs->cidr = load_rpzs->cidr;
load_rpzs->cidr = found;
rbt = rpzs->rbt;
rpzs->rbt = load_rpzs->rbt;
load_rpzs->rbt = rbt;
RWUNLOCK(&rpzs->search_lock, isc_rwlocktype_write);
result = ISC_R_SUCCESS;
unlock_and_detach:
UNLOCK(&rpzs->maint_lock);
RWUNLOCK(&load_rpzs->search_lock, isc_rwlocktype_write);
UNLOCK(&load_rpzs->maint_lock);
dns_rpz_detach_rpzs(load_rpzsp);
return (result);
}
/*
* Add an IP address to the radix tree or a name to the summary database.
*/
isc_result_t
dns_rpz_add(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num, dns_name_t *src_name)
{
dns_rpz_zone_t *rpz;
dns_rpz_type_t rpz_type;
isc_result_t result = ISC_R_FAILURE;
REQUIRE(rpzs != NULL && rpz_num < rpzs->p.num_zones);
rpz = rpzs->zones[rpz_num];
REQUIRE(rpz != NULL);
rpz_type = type_from_name(rpz, src_name);
LOCK(&rpzs->maint_lock);
RWLOCK(&rpzs->search_lock, isc_rwlocktype_write);
switch (rpz_type) {
case DNS_RPZ_TYPE_QNAME:
case DNS_RPZ_TYPE_NSDNAME:
result = add_name(rpzs, rpz_num, rpz_type, src_name);
break;
case DNS_RPZ_TYPE_CLIENT_IP:
case DNS_RPZ_TYPE_IP:
case DNS_RPZ_TYPE_NSIP:
result = add_cidr(rpzs, rpz_num, rpz_type, src_name);
break;
case DNS_RPZ_TYPE_BAD:
break;
}
RWUNLOCK(&rpzs->search_lock, isc_rwlocktype_write);
UNLOCK(&rpzs->maint_lock);
return (result);
}
/*
* Remove an IP address from the radix tree.
*/
static void
del_cidr(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num,
dns_rpz_type_t rpz_type, dns_name_t *src_name)
{
isc_result_t result;
dns_rpz_cidr_key_t tgt_ip;
dns_rpz_prefix_t tgt_prefix;
dns_rpz_addr_zbits_t tgt_set;
dns_rpz_cidr_node_t *tgt, *parent, *child;
/*
* Do not worry about invalid rpz IP address names. If we
* are here, then something relevant was added and so was
* valid. Invalid names here are usually internal RBTDB nodes.
*/
result = name2ipkey(DNS_RPZ_DEBUG_QUIET, rpzs, rpz_num, rpz_type,
src_name, &tgt_ip, &tgt_prefix, &tgt_set);
if (result != ISC_R_SUCCESS)
return;
result = search(rpzs, &tgt_ip, tgt_prefix, &tgt_set, ISC_FALSE, &tgt);
if (result != ISC_R_SUCCESS) {
INSIST(result == ISC_R_NOTFOUND ||
result == DNS_R_PARTIALMATCH);
/*
* Do not worry about missing summary RBT nodes that probably
* correspond to RBTDB nodes that were implicit RBT nodes
* that were later added for (often empty) wildcards
* and then to the RBTDB deferred cleanup list.
*/
return;
}
/*
* Mark the node and its parents to reflect the deleted IP address.
* Do not count bits that are already clear for internal RBTDB nodes.
*/
tgt_set.client_ip &= tgt->set.client_ip;
tgt_set.ip &= tgt->set.ip;
tgt_set.nsip &= tgt->set.nsip;
tgt->set.client_ip &= ~tgt_set.client_ip;
tgt->set.ip &= ~tgt_set.ip;
tgt->set.nsip &= ~tgt_set.nsip;
set_sum_pair(tgt);
adj_trigger_cnt(rpzs, rpz_num, rpz_type, &tgt_ip, tgt_prefix, ISC_FALSE);
/*
* We might need to delete 2 nodes.
*/
do {
/*
* The node is now useless if it has no data of its own
* and 0 or 1 children. We are finished if it is not useless.
*/
if ((child = tgt->child[0]) != NULL) {
if (tgt->child[1] != NULL)
break;
} else {
child = tgt->child[1];
}
if (tgt->set.client_ip != 0 ||
tgt->set.ip != 0 ||
tgt->set.nsip != 0)
break;
/*
* Replace the pointer to this node in the parent with
* the remaining child or NULL.
*/
parent = tgt->parent;
if (parent == NULL) {
rpzs->cidr = child;
} else {
parent->child[parent->child[1] == tgt] = child;
}
/*
* If the child exists fix up its parent pointer.
*/
if (child != NULL)
child->parent = parent;
isc_mem_put(rpzs->mctx, tgt, sizeof(*tgt));
tgt = parent;
} while (tgt != NULL);
}
static void
del_name(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num,
dns_rpz_type_t rpz_type, dns_name_t *src_name)
{
char namebuf[DNS_NAME_FORMATSIZE];
dns_fixedname_t trig_namef;
dns_name_t *trig_name;
dns_rbtnode_t *nmnode;
dns_rpz_nm_data_t *nm_data, del_data;
isc_result_t result;
isc_boolean_t exists;
/*
* We need a summary database of names even with 1 policy zone,
* because wildcard triggers are handled differently.
*/
dns_fixedname_init(&trig_namef);
trig_name = dns_fixedname_name(&trig_namef);
name2data(rpzs, rpz_num, rpz_type, src_name, trig_name, &del_data);
nmnode = NULL;
result = dns_rbt_findnode(rpzs->rbt, trig_name, NULL, &nmnode, NULL, 0,
NULL, NULL);
if (result != ISC_R_SUCCESS) {
/*
* Do not worry about missing summary RBT nodes that probably
* correspond to RBTDB nodes that were implicit RBT nodes
* that were later added for (often empty) wildcards
* and then to the RBTDB deferred cleanup list.
*/
if (result == ISC_R_NOTFOUND ||
result == DNS_R_PARTIALMATCH)
return;
dns_name_format(src_name, namebuf, sizeof(namebuf));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
DNS_LOGMODULE_RBTDB, DNS_RPZ_ERROR_LEVEL,
"rpz del_name(%s) node search failed: %s",
namebuf, isc_result_totext(result));
return;
}
nm_data = nmnode->data;
INSIST(nm_data != NULL);
/*
* Do not count bits that next existed for RBT nodes that would we
* would not have found in a summary for a single RBTDB tree.
*/
del_data.set.qname &= nm_data->set.qname;
del_data.set.ns &= nm_data->set.ns;
del_data.wild.qname &= nm_data->wild.qname;
del_data.wild.ns &= nm_data->wild.ns;
exists = ISC_TF(del_data.set.qname != 0 || del_data.set.ns != 0 ||
del_data.wild.qname != 0 || del_data.wild.ns != 0);
nm_data->set.qname &= ~del_data.set.qname;
nm_data->set.ns &= ~del_data.set.ns;
nm_data->wild.qname &= ~del_data.wild.qname;
nm_data->wild.ns &= ~del_data.wild.ns;
if (nm_data->set.qname == 0 && nm_data->set.ns == 0 &&
nm_data->wild.qname == 0 && nm_data->wild.ns == 0) {
result = dns_rbt_deletenode(rpzs->rbt, nmnode, ISC_FALSE);
if (result != ISC_R_SUCCESS) {
/*
* bin/tests/system/rpz/tests.sh looks for "rpz.*failed".
*/
dns_name_format(src_name, namebuf, sizeof(namebuf));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
DNS_LOGMODULE_RBTDB, DNS_RPZ_ERROR_LEVEL,
"rpz del_name(%s) node delete failed: %s",
namebuf, isc_result_totext(result));
}
}
if (exists)
adj_trigger_cnt(rpzs, rpz_num, rpz_type, NULL, 0, ISC_FALSE);
}
/*
* Remove an IP address from the radix tree or a name from the summary database.
*/
void
dns_rpz_delete(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num,
dns_name_t *src_name) {
dns_rpz_zone_t *rpz;
dns_rpz_type_t rpz_type;
REQUIRE(rpzs != NULL && rpz_num < rpzs->p.num_zones);
rpz = rpzs->zones[rpz_num];
REQUIRE(rpz != NULL);
rpz_type = type_from_name(rpz, src_name);
LOCK(&rpzs->maint_lock);
RWLOCK(&rpzs->search_lock, isc_rwlocktype_write);
switch (rpz_type) {
case DNS_RPZ_TYPE_QNAME:
case DNS_RPZ_TYPE_NSDNAME:
del_name(rpzs, rpz_num, rpz_type, src_name);
break;
case DNS_RPZ_TYPE_CLIENT_IP:
case DNS_RPZ_TYPE_IP:
case DNS_RPZ_TYPE_NSIP:
del_cidr(rpzs, rpz_num, rpz_type, src_name);
break;
case DNS_RPZ_TYPE_BAD:
break;
}
RWUNLOCK(&rpzs->search_lock, isc_rwlocktype_write);
UNLOCK(&rpzs->maint_lock);
}
/*
* Search the summary radix tree to get a relative owner name in a
* policy zone relevant to a triggering IP address.
* rpz_type and zbits limit the search for IP address netaddr
* return the policy zone's number or DNS_RPZ_INVALID_NUM
* ip_name is the relative owner name found and
* *prefixp is its prefix length.
*/
dns_rpz_num_t
dns_rpz_find_ip(dns_rpz_zones_t *rpzs, dns_rpz_type_t rpz_type,
dns_rpz_zbits_t zbits, const isc_netaddr_t *netaddr,
dns_name_t *ip_name, dns_rpz_prefix_t *prefixp)
{
dns_rpz_cidr_key_t tgt_ip;
dns_rpz_addr_zbits_t tgt_set;
dns_rpz_cidr_node_t *found;
isc_result_t result;
dns_rpz_num_t rpz_num;
dns_rpz_have_t have;
int i;
LOCK(&rpzs->maint_lock);
have = rpzs->have;
UNLOCK(&rpzs->maint_lock);
/*
* Convert IP address to CIDR tree key.
*/
if (netaddr->family == AF_INET) {
tgt_ip.w[0] = 0;
tgt_ip.w[1] = 0;
tgt_ip.w[2] = ADDR_V4MAPPED;
tgt_ip.w[3] = ntohl(netaddr->type.in.s_addr);
switch (rpz_type) {
case DNS_RPZ_TYPE_CLIENT_IP:
zbits &= have.client_ipv4;
break;
case DNS_RPZ_TYPE_IP:
zbits &= have.ipv4;
break;
case DNS_RPZ_TYPE_NSIP:
zbits &= have.nsipv4;
break;
default:
INSIST(0);
break;
}
} else if (netaddr->family == AF_INET6) {
dns_rpz_cidr_key_t src_ip6;
/*
* Given the int aligned struct in_addr member of netaddr->type
* one could cast netaddr->type.in6 to dns_rpz_cidr_key_t *,
* but some people object.
*/
memmove(src_ip6.w, &netaddr->type.in6, sizeof(src_ip6.w));
for (i = 0; i < 4; i++) {
tgt_ip.w[i] = ntohl(src_ip6.w[i]);
}
switch (rpz_type) {
case DNS_RPZ_TYPE_CLIENT_IP:
zbits &= have.client_ipv6;
break;
case DNS_RPZ_TYPE_IP:
zbits &= have.ipv6;
break;
case DNS_RPZ_TYPE_NSIP:
zbits &= have.nsipv6;
break;
default:
INSIST(0);
break;
}
} else {
return (DNS_RPZ_INVALID_NUM);
}
if (zbits == 0)
return (DNS_RPZ_INVALID_NUM);
make_addr_set(&tgt_set, zbits, rpz_type);
RWLOCK(&rpzs->search_lock, isc_rwlocktype_read);
result = search(rpzs, &tgt_ip, 128, &tgt_set, ISC_FALSE, &found);
if (result == ISC_R_NOTFOUND) {
/*
* There are no eligible zones for this IP address.
*/
RWUNLOCK(&rpzs->search_lock, isc_rwlocktype_read);
return (DNS_RPZ_INVALID_NUM);
}
/*
* Construct the trigger name for the longest matching trigger
* in the first eligible zone with a match.
*/
*prefixp = found->prefix;
switch (rpz_type) {
case DNS_RPZ_TYPE_CLIENT_IP:
rpz_num = zbit_to_num(found->set.client_ip & tgt_set.client_ip);
break;
case DNS_RPZ_TYPE_IP:
rpz_num = zbit_to_num(found->set.ip & tgt_set.ip);
break;
case DNS_RPZ_TYPE_NSIP:
rpz_num = zbit_to_num(found->set.nsip & tgt_set.nsip);
break;
default:
INSIST(0);
break;
}
result = ip2name(&found->ip, found->prefix, dns_rootname, ip_name);
RWUNLOCK(&rpzs->search_lock, isc_rwlocktype_read);
if (result != ISC_R_SUCCESS) {
/*
* bin/tests/system/rpz/tests.sh looks for "rpz.*failed".
*/
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
DNS_LOGMODULE_RBTDB, DNS_RPZ_ERROR_LEVEL,
"rpz ip2name() failed: %s",
isc_result_totext(result));
return (DNS_RPZ_INVALID_NUM);
}
return (rpz_num);
}
/*
* Search the summary radix tree for policy zones with triggers matching
* a name.
*/
dns_rpz_zbits_t
dns_rpz_find_name(dns_rpz_zones_t *rpzs, dns_rpz_type_t rpz_type,
dns_rpz_zbits_t zbits, dns_name_t *trig_name)
{
char namebuf[DNS_NAME_FORMATSIZE];
dns_rbtnode_t *nmnode;
const dns_rpz_nm_data_t *nm_data;
dns_rpz_zbits_t found_zbits;
isc_result_t result;
if (zbits == 0)
return (0);
found_zbits = 0;
RWLOCK(&rpzs->search_lock, isc_rwlocktype_read);
nmnode = NULL;
result = dns_rbt_findnode(rpzs->rbt, trig_name, NULL, &nmnode, NULL,
DNS_RBTFIND_EMPTYDATA, NULL, NULL);
switch (result) {
case ISC_R_SUCCESS:
nm_data = nmnode->data;
if (nm_data != NULL) {
if (rpz_type == DNS_RPZ_TYPE_QNAME)
found_zbits = nm_data->set.qname;
else
found_zbits = nm_data->set.ns;
}
nmnode = nmnode->parent;
/* fall thru */
case DNS_R_PARTIALMATCH:
while (nmnode != NULL) {
nm_data = nmnode->data;
if (nm_data != NULL) {
if (rpz_type == DNS_RPZ_TYPE_QNAME)
found_zbits |= nm_data->wild.qname;
else
found_zbits |= nm_data->wild.ns;
}
nmnode = nmnode->parent;
}
break;
case ISC_R_NOTFOUND:
break;
default:
/*
* bin/tests/system/rpz/tests.sh looks for "rpz.*failed".
*/
dns_name_format(trig_name, namebuf, sizeof(namebuf));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
DNS_LOGMODULE_RBTDB, DNS_RPZ_ERROR_LEVEL,
"dns_rpz_find_name(%s) failed: %s",
namebuf, isc_result_totext(result));
break;
}
RWUNLOCK(&rpzs->search_lock, isc_rwlocktype_read);
return (zbits & found_zbits);
}
/*
* Translate CNAME rdata to a QNAME response policy action.
*/
dns_rpz_policy_t
dns_rpz_decode_cname(dns_rpz_zone_t *rpz, dns_rdataset_t *rdataset,
dns_name_t *selfname)
{
dns_rdata_t rdata = DNS_RDATA_INIT;
dns_rdata_cname_t cname;
isc_result_t result;
result = dns_rdataset_first(rdataset);
INSIST(result == ISC_R_SUCCESS);
dns_rdataset_current(rdataset, &rdata);
result = dns_rdata_tostruct(&rdata, &cname, NULL);
INSIST(result == ISC_R_SUCCESS);
dns_rdata_reset(&rdata);
/*
* CNAME . means NXDOMAIN
*/
if (dns_name_equal(&cname.cname, dns_rootname))
return (DNS_RPZ_POLICY_NXDOMAIN);
if (dns_name_iswildcard(&cname.cname)) {
/*
* CNAME *. means NODATA
*/
if (dns_name_countlabels(&cname.cname) == 2)
return (DNS_RPZ_POLICY_NODATA);
/*
* A qname of www.evil.com and a policy of
* *.evil.com CNAME *.garden.net
* gives a result of
* evil.com CNAME evil.com.garden.net
*/
if (dns_name_countlabels(&cname.cname) > 2)
return (DNS_RPZ_POLICY_WILDCNAME);
}
/*
* CNAME rpz-tcp-only. means "send truncated UDP responses."
*/
if (dns_name_equal(&cname.cname, &rpz->tcp_only))
return (DNS_RPZ_POLICY_TCP_ONLY);
/*
* CNAME rpz-drop. means "do not respond."
*/
if (dns_name_equal(&cname.cname, &rpz->drop))
return (DNS_RPZ_POLICY_DROP);
/*
* CNAME rpz-passthru. means "do not rewrite."
*/
if (dns_name_equal(&cname.cname, &rpz->passthru))
return (DNS_RPZ_POLICY_PASSTHRU);
/*
* 128.1.0.127.rpz-ip CNAME 128.1.0.0.127. is obsolete PASSTHRU
*/
if (selfname != NULL && dns_name_equal(&cname.cname, selfname))
return (DNS_RPZ_POLICY_PASSTHRU);
/*
* Any other rdata gives a response consisting of the rdata.
*/
return (DNS_RPZ_POLICY_RECORD);
}