opensslrsa_link.c revision 433e06a25cdd92d665abda3e64c2c65f4a3f9b21
/*
* Copyright (C) 2004-2009 Internet Systems Consortium, Inc. ("ISC")
* Copyright (C) 2000-2003 Internet Software Consortium.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Principal Author: Brian Wellington
* $Id: opensslrsa_link.c,v 1.38 2011/01/10 05:32:03 marka Exp $
*/
#ifdef OPENSSL
#include <config.h>
#ifndef USE_EVP
#if !defined(HAVE_EVP_SHA256) || !defined(HAVE_EVP_SHA512)
#define USE_EVP 0
#else
#define USE_EVP 1
#endif
#endif
#include <isc/entropy.h>
#include <isc/md5.h>
#include <isc/sha1.h>
#include <isc/sha2.h>
#include <isc/mem.h>
#include <isc/string.h>
#include <isc/util.h>
#include <dst/result.h>
#include "dst_internal.h"
#include "dst_openssl.h"
#include "dst_parse.h"
#include <openssl/err.h>
#include <openssl/objects.h>
#include <openssl/rsa.h>
#if OPENSSL_VERSION_NUMBER > 0x00908000L
#include <openssl/bn.h>
#endif
#include <openssl/engine.h>
/*
* We don't use configure for windows so enforce the OpenSSL version
* here. Unlike with configure we don't support overriding this test.
*/
#ifdef WIN32
#if !((OPENSSL_VERSION_NUMBER >= 0x009070cfL && \
OPENSSL_VERSION_NUMBER < 0x00908000L) || \
OPENSSL_VERSION_NUMBER >= 0x0090804fL)
#error Please upgrade OpenSSL to 0.9.8d/0.9.7l or greater.
#endif
#endif
/*
* XXXMPA Temporarily disable RSA_BLINDING as it requires
* good quality random data that cannot currently be guaranteed.
* XXXMPA Find which versions of openssl use pseudo random data
* and set RSA_FLAG_BLINDING for those.
*/
#if 0
#if OPENSSL_VERSION_NUMBER < 0x0090601fL
#define SET_FLAGS(rsa) \
do { \
(rsa)->flags &= ~(RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE); \
(rsa)->flags |= RSA_FLAG_BLINDING; \
} while (0)
#else
#define SET_FLAGS(rsa) \
do { \
(rsa)->flags |= RSA_FLAG_BLINDING; \
} while (0)
#endif
#endif
#if OPENSSL_VERSION_NUMBER < 0x0090601fL
#define SET_FLAGS(rsa) \
do { \
(rsa)->flags &= ~(RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE); \
(rsa)->flags &= ~RSA_FLAG_BLINDING; \
} while (0)
#elif defined(RSA_FLAG_NO_BLINDING)
#define SET_FLAGS(rsa) \
do { \
(rsa)->flags &= ~RSA_FLAG_BLINDING; \
(rsa)->flags |= RSA_FLAG_NO_BLINDING; \
} while (0)
#else
#define SET_FLAGS(rsa) \
do { \
(rsa)->flags &= ~RSA_FLAG_BLINDING; \
} while (0)
#endif
#define DST_RET(a) {ret = a; goto err;}
static isc_result_t opensslrsa_todns(const dst_key_t *key, isc_buffer_t *data);
static isc_result_t
opensslrsa_createctx(dst_key_t *key, dst_context_t *dctx) {
#if USE_EVP
EVP_MD_CTX *evp_md_ctx;
const EVP_MD *type = NULL;
#endif
UNUSED(key);
REQUIRE(dctx->key->key_alg == DST_ALG_RSAMD5 ||
dctx->key->key_alg == DST_ALG_RSASHA1 ||
dctx->key->key_alg == DST_ALG_NSEC3RSASHA1 ||
dctx->key->key_alg == DST_ALG_RSASHA256 ||
dctx->key->key_alg == DST_ALG_RSASHA512);
#if USE_EVP
evp_md_ctx = EVP_MD_CTX_create();
if (evp_md_ctx == NULL)
return (ISC_R_NOMEMORY);
switch (dctx->key->key_alg) {
case DST_ALG_RSAMD5:
type = EVP_md5(); /* MD5 + RSA */
break;
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
type = EVP_sha1(); /* SHA1 + RSA */
break;
#ifdef HAVE_EVP_SHA256
case DST_ALG_RSASHA256:
type = EVP_sha256(); /* SHA256 + RSA */
break;
#endif
#ifdef HAVE_EVP_SHA512
case DST_ALG_RSASHA512:
type = EVP_sha512();
break;
#endif
default:
INSIST(0);
}
if (!EVP_DigestInit_ex(evp_md_ctx, type, NULL)) {
EVP_MD_CTX_destroy(evp_md_ctx);
return (ISC_R_FAILURE);
}
dctx->ctxdata.evp_md_ctx = evp_md_ctx;
#else
switch (dctx->key->key_alg) {
case DST_ALG_RSAMD5:
{
isc_md5_t *md5ctx;
md5ctx = isc_mem_get(dctx->mctx, sizeof(isc_md5_t));
if (md5ctx == NULL)
return (ISC_R_NOMEMORY);
isc_md5_init(md5ctx);
dctx->ctxdata.md5ctx = md5ctx;
}
break;
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
{
isc_sha1_t *sha1ctx;
sha1ctx = isc_mem_get(dctx->mctx, sizeof(isc_sha1_t));
if (sha1ctx == NULL)
return (ISC_R_NOMEMORY);
isc_sha1_init(sha1ctx);
dctx->ctxdata.sha1ctx = sha1ctx;
}
break;
case DST_ALG_RSASHA256:
{
isc_sha256_t *sha256ctx;
sha256ctx = isc_mem_get(dctx->mctx,
sizeof(isc_sha256_t));
if (sha256ctx == NULL)
return (ISC_R_NOMEMORY);
isc_sha256_init(sha256ctx);
dctx->ctxdata.sha256ctx = sha256ctx;
}
break;
case DST_ALG_RSASHA512:
{
isc_sha512_t *sha512ctx;
sha512ctx = isc_mem_get(dctx->mctx,
sizeof(isc_sha512_t));
if (sha512ctx == NULL)
return (ISC_R_NOMEMORY);
isc_sha512_init(sha512ctx);
dctx->ctxdata.sha512ctx = sha512ctx;
}
break;
default:
INSIST(0);
}
#endif
return (ISC_R_SUCCESS);
}
static void
opensslrsa_destroyctx(dst_context_t *dctx) {
#if USE_EVP
EVP_MD_CTX *evp_md_ctx = dctx->ctxdata.evp_md_ctx;
#endif
REQUIRE(dctx->key->key_alg == DST_ALG_RSAMD5 ||
dctx->key->key_alg == DST_ALG_RSASHA1 ||
dctx->key->key_alg == DST_ALG_NSEC3RSASHA1 ||
dctx->key->key_alg == DST_ALG_RSASHA256 ||
dctx->key->key_alg == DST_ALG_RSASHA512);
#if USE_EVP
if (evp_md_ctx != NULL) {
EVP_MD_CTX_destroy(evp_md_ctx);
dctx->ctxdata.evp_md_ctx = NULL;
}
#else
switch (dctx->key->key_alg) {
case DST_ALG_RSAMD5:
{
isc_md5_t *md5ctx = dctx->ctxdata.md5ctx;
if (md5ctx != NULL) {
isc_md5_invalidate(md5ctx);
isc_mem_put(dctx->mctx, md5ctx,
sizeof(isc_md5_t));
dctx->ctxdata.md5ctx = NULL;
}
}
break;
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
{
isc_sha1_t *sha1ctx = dctx->ctxdata.sha1ctx;
if (sha1ctx != NULL) {
isc_sha1_invalidate(sha1ctx);
isc_mem_put(dctx->mctx, sha1ctx,
sizeof(isc_sha1_t));
dctx->ctxdata.sha1ctx = NULL;
}
}
break;
case DST_ALG_RSASHA256:
{
isc_sha256_t *sha256ctx = dctx->ctxdata.sha256ctx;
if (sha256ctx != NULL) {
isc_sha256_invalidate(sha256ctx);
isc_mem_put(dctx->mctx, sha256ctx,
sizeof(isc_sha256_t));
dctx->ctxdata.sha256ctx = NULL;
}
}
break;
case DST_ALG_RSASHA512:
{
isc_sha512_t *sha512ctx = dctx->ctxdata.sha512ctx;
if (sha512ctx != NULL) {
isc_sha512_invalidate(sha512ctx);
isc_mem_put(dctx->mctx, sha512ctx,
sizeof(isc_sha512_t));
dctx->ctxdata.sha512ctx = NULL;
}
}
break;
default:
INSIST(0);
}
#endif
}
static isc_result_t
opensslrsa_adddata(dst_context_t *dctx, const isc_region_t *data) {
#if USE_EVP
EVP_MD_CTX *evp_md_ctx = dctx->ctxdata.evp_md_ctx;
#endif
REQUIRE(dctx->key->key_alg == DST_ALG_RSAMD5 ||
dctx->key->key_alg == DST_ALG_RSASHA1 ||
dctx->key->key_alg == DST_ALG_NSEC3RSASHA1 ||
dctx->key->key_alg == DST_ALG_RSASHA256 ||
dctx->key->key_alg == DST_ALG_RSASHA512);
#if USE_EVP
if (!EVP_DigestUpdate(evp_md_ctx, data->base, data->length)) {
return (ISC_R_FAILURE);
}
#else
switch (dctx->key->key_alg) {
case DST_ALG_RSAMD5:
{
isc_md5_t *md5ctx = dctx->ctxdata.md5ctx;
isc_md5_update(md5ctx, data->base, data->length);
}
break;
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
{
isc_sha1_t *sha1ctx = dctx->ctxdata.sha1ctx;
isc_sha1_update(sha1ctx, data->base, data->length);
}
break;
case DST_ALG_RSASHA256:
{
isc_sha256_t *sha256ctx = dctx->ctxdata.sha256ctx;
isc_sha256_update(sha256ctx, data->base, data->length);
}
break;
case DST_ALG_RSASHA512:
{
isc_sha512_t *sha512ctx = dctx->ctxdata.sha512ctx;
isc_sha512_update(sha512ctx, data->base, data->length);
}
break;
default:
INSIST(0);
}
#endif
return (ISC_R_SUCCESS);
}
#if ! USE_EVP && OPENSSL_VERSION_NUMBER < 0x00908000L
/*
* Digest prefixes from RFC 5702.
*/
static unsigned char sha256_prefix[] =
{ 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48,
0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20};
static unsigned char sha512_prefix[] =
{ 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48,
0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40};
#define PREFIXLEN sizeof(sha512_prefix)
#else
#define PREFIXLEN 0
#endif
static isc_result_t
opensslrsa_sign(dst_context_t *dctx, isc_buffer_t *sig) {
dst_key_t *key = dctx->key;
isc_region_t r;
unsigned int siglen = 0;
#if USE_EVP
EVP_MD_CTX *evp_md_ctx = dctx->ctxdata.evp_md_ctx;
EVP_PKEY *pkey = key->keydata.pkey;
#else
RSA *rsa = key->keydata.rsa;
/* note: ISC_SHA512_DIGESTLENGTH >= ISC_*_DIGESTLENGTH */
unsigned char digest[PREFIXLEN + ISC_SHA512_DIGESTLENGTH];
int status;
int type = 0;
unsigned int digestlen = 0;
char *message;
unsigned long err;
const char* file;
int line;
#if OPENSSL_VERSION_NUMBER < 0x00908000L
unsigned int prefixlen = 0;
const unsigned char *prefix = NULL;
#endif
#endif
REQUIRE(dctx->key->key_alg == DST_ALG_RSAMD5 ||
dctx->key->key_alg == DST_ALG_RSASHA1 ||
dctx->key->key_alg == DST_ALG_NSEC3RSASHA1 ||
dctx->key->key_alg == DST_ALG_RSASHA256 ||
dctx->key->key_alg == DST_ALG_RSASHA512);
isc_buffer_availableregion(sig, &r);
#if USE_EVP
if (r.length < (unsigned int) EVP_PKEY_size(pkey))
return (ISC_R_NOSPACE);
if (!EVP_SignFinal(evp_md_ctx, r.base, &siglen, pkey)) {
return (ISC_R_FAILURE);
}
#else
if (r.length < (unsigned int) RSA_size(rsa))
return (ISC_R_NOSPACE);
switch (dctx->key->key_alg) {
case DST_ALG_RSAMD5:
{
isc_md5_t *md5ctx = dctx->ctxdata.md5ctx;
isc_md5_final(md5ctx, digest);
type = NID_md5;
digestlen = ISC_MD5_DIGESTLENGTH;
}
break;
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
{
isc_sha1_t *sha1ctx = dctx->ctxdata.sha1ctx;
isc_sha1_final(sha1ctx, digest);
type = NID_sha1;
digestlen = ISC_SHA1_DIGESTLENGTH;
}
break;
case DST_ALG_RSASHA256:
{
isc_sha256_t *sha256ctx = dctx->ctxdata.sha256ctx;
isc_sha256_final(digest, sha256ctx);
digestlen = ISC_SHA256_DIGESTLENGTH;
#if OPENSSL_VERSION_NUMBER < 0x00908000L
prefix = sha256_prefix;
prefixlen = sizeof(sha256_prefix);
#else
type = NID_sha256;
#endif
}
break;
case DST_ALG_RSASHA512:
{
isc_sha512_t *sha512ctx = dctx->ctxdata.sha512ctx;
isc_sha512_final(digest, sha512ctx);
digestlen = ISC_SHA512_DIGESTLENGTH;
#if OPENSSL_VERSION_NUMBER < 0x00908000L
prefix = sha512_prefix;
prefixlen = sizeof(sha512_prefix);
#else
type = NID_sha512;
#endif
}
break;
default:
INSIST(0);
}
#if OPENSSL_VERSION_NUMBER < 0x00908000L
switch (dctx->key->key_alg) {
case DST_ALG_RSAMD5:
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
INSIST(type != 0);
status = RSA_sign(type, digest, digestlen, r.base,
&siglen, rsa);
break;
case DST_ALG_RSASHA256:
case DST_ALG_RSASHA512:
INSIST(prefix != NULL);
INSIST(prefixlen != 0);
INSIST(prefixlen + digestlen <= sizeof(digest));
memmove(digest + prefixlen, digest, digestlen);
memcpy(digest, prefix, prefixlen);
status = RSA_private_encrypt(digestlen + prefixlen,
digest, r.base, rsa,
RSA_PKCS1_PADDING);
if (status < 0)
status = 0;
else
siglen = status;
break;
default:
INSIST(0);
}
#else
INSIST(type != 0);
status = RSA_sign(type, digest, digestlen, r.base, &siglen, rsa);
#endif
if (status == 0) {
err = ERR_peek_error_line(&file, &line);
if (err != 0U) {
message = ERR_error_string(err, NULL);
}
return (dst__openssl_toresult(DST_R_OPENSSLFAILURE));
}
#endif
isc_buffer_add(sig, siglen);
return (ISC_R_SUCCESS);
}
static isc_result_t
opensslrsa_verify(dst_context_t *dctx, const isc_region_t *sig) {
dst_key_t *key = dctx->key;
int status = 0;
#if USE_EVP
EVP_MD_CTX *evp_md_ctx = dctx->ctxdata.evp_md_ctx;
EVP_PKEY *pkey = key->keydata.pkey;
#else
/* note: ISC_SHA512_DIGESTLENGTH >= ISC_*_DIGESTLENGTH */
unsigned char digest[ISC_SHA512_DIGESTLENGTH];
int type = 0;
unsigned int digestlen = 0;
RSA *rsa = key->keydata.rsa;
#if OPENSSL_VERSION_NUMBER < 0x00908000L
unsigned int prefixlen = 0;
const unsigned char *prefix = NULL;
#endif
#endif
REQUIRE(dctx->key->key_alg == DST_ALG_RSAMD5 ||
dctx->key->key_alg == DST_ALG_RSASHA1 ||
dctx->key->key_alg == DST_ALG_NSEC3RSASHA1 ||
dctx->key->key_alg == DST_ALG_RSASHA256 ||
dctx->key->key_alg == DST_ALG_RSASHA512);
#if USE_EVP
status = EVP_VerifyFinal(evp_md_ctx, sig->base, sig->length, pkey);
#else
switch (dctx->key->key_alg) {
case DST_ALG_RSAMD5:
{
isc_md5_t *md5ctx = dctx->ctxdata.md5ctx;
isc_md5_final(md5ctx, digest);
type = NID_md5;
digestlen = ISC_MD5_DIGESTLENGTH;
}
break;
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
{
isc_sha1_t *sha1ctx = dctx->ctxdata.sha1ctx;
isc_sha1_final(sha1ctx, digest);
type = NID_sha1;
digestlen = ISC_SHA1_DIGESTLENGTH;
}
break;
case DST_ALG_RSASHA256:
{
isc_sha256_t *sha256ctx = dctx->ctxdata.sha256ctx;
isc_sha256_final(digest, sha256ctx);
digestlen = ISC_SHA256_DIGESTLENGTH;
#if OPENSSL_VERSION_NUMBER < 0x00908000L
prefix = sha256_prefix;
prefixlen = sizeof(sha256_prefix);
#else
type = NID_sha256;
#endif
}
break;
case DST_ALG_RSASHA512:
{
isc_sha512_t *sha512ctx = dctx->ctxdata.sha512ctx;
isc_sha512_final(digest, sha512ctx);
digestlen = ISC_SHA512_DIGESTLENGTH;
#if OPENSSL_VERSION_NUMBER < 0x00908000L
prefix = sha512_prefix;
prefixlen = sizeof(sha512_prefix);
#else
type = NID_sha512;
#endif
}
break;
default:
INSIST(0);
}
if (sig->length != (unsigned int) RSA_size(rsa))
return (DST_R_VERIFYFAILURE);
#if OPENSSL_VERSION_NUMBER < 0x00908000L
switch (dctx->key->key_alg) {
case DST_ALG_RSAMD5:
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
INSIST(type != 0);
status = RSA_verify(type, digest, digestlen, sig->base,
RSA_size(rsa), rsa);
break;
case DST_ALG_RSASHA256:
case DST_ALG_RSASHA512:
{
/*
* 1024 is big enough for all valid RSA bit sizes
* for use with DNSSEC.
*/
unsigned char original[PREFIXLEN + 1024];
INSIST(prefix != NULL);
INSIST(prefixlen != 0U);
if (RSA_size(rsa) > (int)sizeof(original))
return (DST_R_VERIFYFAILURE);
status = RSA_public_decrypt(sig->length, sig->base,
original, rsa,
RSA_PKCS1_PADDING);
if (status <= 0)
return (DST_R_VERIFYFAILURE);
if (status != (int)(prefixlen + digestlen))
return (DST_R_VERIFYFAILURE);
if (memcmp(original, prefix, prefixlen))
return (DST_R_VERIFYFAILURE);
if (memcmp(original + prefixlen, digest, digestlen))
return (DST_R_VERIFYFAILURE);
status = 1;
}
break;
default:
INSIST(0);
}
#else
INSIST(type != 0);
status = RSA_verify(type, digest, digestlen, sig->base,
RSA_size(rsa), rsa);
#endif
#endif
if (status != 1)
return (dst__openssl_toresult(DST_R_VERIFYFAILURE));
return (ISC_R_SUCCESS);
}
static isc_boolean_t
opensslrsa_compare(const dst_key_t *key1, const dst_key_t *key2) {
int status;
RSA *rsa1 = NULL, *rsa2 = NULL;
#if USE_EVP
EVP_PKEY *pkey1, *pkey2;
#endif
#if USE_EVP
pkey1 = key1->keydata.pkey;
pkey2 = key2->keydata.pkey;
/*
* The pkey reference will keep these around after
* the RSA_free() call.
*/
if (pkey1 != NULL) {
rsa1 = EVP_PKEY_get1_RSA(pkey1);
RSA_free(rsa1);
}
if (pkey2 != NULL) {
rsa2 = EVP_PKEY_get1_RSA(pkey2);
RSA_free(rsa2);
}
#else
rsa1 = key1->keydata.rsa;
rsa2 = key2->keydata.rsa;
#endif
if (rsa1 == NULL && rsa2 == NULL)
return (ISC_TRUE);
else if (rsa1 == NULL || rsa2 == NULL)
return (ISC_FALSE);
status = BN_cmp(rsa1->n, rsa2->n) ||
BN_cmp(rsa1->e, rsa2->e);
if (status != 0)
return (ISC_FALSE);
#if USE_EVP
if ((rsa1->flags & RSA_FLAG_EXT_PKEY) != 0 ||
(rsa2->flags & RSA_FLAG_EXT_PKEY) != 0) {
if ((rsa1->flags & RSA_FLAG_EXT_PKEY) == 0 ||
(rsa2->flags & RSA_FLAG_EXT_PKEY) == 0)
return (ISC_FALSE);
/*
* Can't compare private parameters, BTW does it make sense?
*/
return (ISC_TRUE);
}
#endif
if (rsa1->d != NULL || rsa2->d != NULL) {
if (rsa1->d == NULL || rsa2->d == NULL)
return (ISC_FALSE);
status = BN_cmp(rsa1->d, rsa2->d) ||
BN_cmp(rsa1->p, rsa2->p) ||
BN_cmp(rsa1->q, rsa2->q);
if (status != 0)
return (ISC_FALSE);
}
return (ISC_TRUE);
}
#if OPENSSL_VERSION_NUMBER > 0x00908000L
static int
progress_cb(int p, int n, BN_GENCB *cb)
{
union {
void *dptr;
void (*fptr)(int);
} u;
UNUSED(n);
u.dptr = cb->arg;
if (u.fptr != NULL)
u.fptr(p);
return (1);
}
#endif
static isc_result_t
opensslrsa_generate(dst_key_t *key, int exp, void (*callback)(int)) {
#if OPENSSL_VERSION_NUMBER > 0x00908000L
BN_GENCB cb;
union {
void *dptr;
void (*fptr)(int);
} u;
RSA *rsa = RSA_new();
BIGNUM *e = BN_new();
#if USE_EVP
EVP_PKEY *pkey = EVP_PKEY_new();
#endif
if (rsa == NULL || e == NULL)
goto err;
#if USE_EVP
if (pkey == NULL)
goto err;
if (!EVP_PKEY_set1_RSA(pkey, rsa))
goto err;
#endif
if (exp == 0) {
/* RSA_F4 0x10001 */
BN_set_bit(e, 0);
BN_set_bit(e, 16);
} else {
/* F5 0x100000001 */
BN_set_bit(e, 0);
BN_set_bit(e, 32);
}
if (callback == NULL) {
BN_GENCB_set_old(&cb, NULL, NULL);
} else {
u.fptr = callback;
BN_GENCB_set(&cb, &progress_cb, u.dptr);
}
if (RSA_generate_key_ex(rsa, key->key_size, e, &cb)) {
BN_free(e);
SET_FLAGS(rsa);
#if USE_EVP
key->keydata.pkey = pkey;
RSA_free(rsa);
#else
key->keydata.rsa = rsa;
#endif
return (ISC_R_SUCCESS);
}
err:
#if USE_EVP
if (pkey != NULL)
EVP_PKEY_free(pkey);
#endif
if (e != NULL)
BN_free(e);
if (rsa != NULL)
RSA_free(rsa);
return (dst__openssl_toresult(DST_R_OPENSSLFAILURE));
#else
RSA *rsa;
unsigned long e;
#if USE_EVP
EVP_PKEY *pkey = EVP_PKEY_new();
UNUSED(callback);
if (pkey == NULL)
return (ISC_R_NOMEMORY);
#else
UNUSED(callback);
#endif
if (exp == 0)
e = RSA_F4;
else
e = 0x40000003;
rsa = RSA_generate_key(key->key_size, e, NULL, NULL);
if (rsa == NULL) {
#if USE_EVP
EVP_PKEY_free(pkey);
#endif
return (dst__openssl_toresult(DST_R_OPENSSLFAILURE));
}
SET_FLAGS(rsa);
#if USE_EVP
if (!EVP_PKEY_set1_RSA(pkey, rsa)) {
EVP_PKEY_free(pkey);
RSA_free(rsa);
return (dst__openssl_toresult(DST_R_OPENSSLFAILURE));
}
key->keydata.pkey = pkey;
RSA_free(rsa);
#else
key->keydata.rsa = rsa;
#endif
return (ISC_R_SUCCESS);
#endif
}
static isc_boolean_t
opensslrsa_isprivate(const dst_key_t *key) {
#if USE_EVP
RSA *rsa = EVP_PKEY_get1_RSA(key->keydata.pkey);
INSIST(rsa != NULL);
RSA_free(rsa);
/* key->keydata.pkey still has a reference so rsa is still valid. */
#else
RSA *rsa = key->keydata.rsa;
#endif
if (rsa != NULL && (rsa->flags & RSA_FLAG_EXT_PKEY) != 0)
return (ISC_TRUE);
return (ISC_TF(rsa != NULL && rsa->d != NULL));
}
static void
opensslrsa_destroy(dst_key_t *key) {
#if USE_EVP
EVP_PKEY *pkey = key->keydata.pkey;
EVP_PKEY_free(pkey);
key->keydata.pkey = NULL;
#else
RSA *rsa = key->keydata.rsa;
RSA_free(rsa);
key->keydata.rsa = NULL;
#endif
}
static isc_result_t
opensslrsa_todns(const dst_key_t *key, isc_buffer_t *data) {
isc_region_t r;
unsigned int e_bytes;
unsigned int mod_bytes;
isc_result_t ret;
RSA *rsa;
#if USE_EVP
EVP_PKEY *pkey;
#endif
#if USE_EVP
REQUIRE(key->keydata.pkey != NULL);
#else
REQUIRE(key->keydata.rsa != NULL);
#endif
#if USE_EVP
pkey = key->keydata.pkey;
rsa = EVP_PKEY_get1_RSA(pkey);
if (rsa == NULL)
return (dst__openssl_toresult(DST_R_OPENSSLFAILURE));
#else
rsa = key->keydata.rsa;
#endif
isc_buffer_availableregion(data, &r);
e_bytes = BN_num_bytes(rsa->e);
mod_bytes = BN_num_bytes(rsa->n);
if (e_bytes < 256) { /*%< key exponent is <= 2040 bits */
if (r.length < 1)
DST_RET(ISC_R_NOSPACE);
isc_buffer_putuint8(data, (isc_uint8_t) e_bytes);
isc_region_consume(&r, 1);
} else {
if (r.length < 3)
DST_RET(ISC_R_NOSPACE);
isc_buffer_putuint8(data, 0);
isc_buffer_putuint16(data, (isc_uint16_t) e_bytes);
isc_region_consume(&r, 3);
}
if (r.length < e_bytes + mod_bytes)
DST_RET(ISC_R_NOSPACE);
BN_bn2bin(rsa->e, r.base);
isc_region_consume(&r, e_bytes);
BN_bn2bin(rsa->n, r.base);
isc_buffer_add(data, e_bytes + mod_bytes);
ret = ISC_R_SUCCESS;
err:
#if USE_EVP
if (rsa != NULL)
RSA_free(rsa);
#endif
return (ret);
}
static isc_result_t
opensslrsa_fromdns(dst_key_t *key, isc_buffer_t *data) {
RSA *rsa;
isc_region_t r;
unsigned int e_bytes;
#if USE_EVP
EVP_PKEY *pkey;
#endif
isc_buffer_remainingregion(data, &r);
if (r.length == 0)
return (ISC_R_SUCCESS);
rsa = RSA_new();
if (rsa == NULL)
return (dst__openssl_toresult(ISC_R_NOMEMORY));
SET_FLAGS(rsa);
if (r.length < 1) {
RSA_free(rsa);
return (DST_R_INVALIDPUBLICKEY);
}
e_bytes = *r.base++;
r.length--;
if (e_bytes == 0) {
if (r.length < 2) {
RSA_free(rsa);
return (DST_R_INVALIDPUBLICKEY);
}
e_bytes = ((*r.base++) << 8);
e_bytes += *r.base++;
r.length -= 2;
}
if (r.length < e_bytes) {
RSA_free(rsa);
return (DST_R_INVALIDPUBLICKEY);
}
rsa->e = BN_bin2bn(r.base, e_bytes, NULL);
r.base += e_bytes;
r.length -= e_bytes;
rsa->n = BN_bin2bn(r.base, r.length, NULL);
key->key_size = BN_num_bits(rsa->n);
isc_buffer_forward(data, r.length);
#if USE_EVP
pkey = EVP_PKEY_new();
if (pkey == NULL) {
RSA_free(rsa);
return (ISC_R_NOMEMORY);
}
if (!EVP_PKEY_set1_RSA(pkey, rsa)) {
EVP_PKEY_free(pkey);
RSA_free(rsa);
return (dst__openssl_toresult(DST_R_OPENSSLFAILURE));
}
key->keydata.pkey = pkey;
RSA_free(rsa);
#else
key->keydata.rsa = rsa;
#endif
return (ISC_R_SUCCESS);
}
static isc_result_t
opensslrsa_tofile(const dst_key_t *key, const char *directory) {
int i;
RSA *rsa;
dst_private_t priv;
unsigned char *bufs[8];
isc_result_t result;
#if USE_EVP
if (key->keydata.pkey == NULL)
return (DST_R_NULLKEY);
rsa = EVP_PKEY_get1_RSA(key->keydata.pkey);
if (rsa == NULL)
return (dst__openssl_toresult(DST_R_OPENSSLFAILURE));
#else
if (key->keydata.rsa == NULL)
return (DST_R_NULLKEY);
rsa = key->keydata.rsa;
#endif
for (i = 0; i < 8; i++) {
bufs[i] = isc_mem_get(key->mctx, BN_num_bytes(rsa->n));
if (bufs[i] == NULL) {
result = ISC_R_NOMEMORY;
goto fail;
}
}
i = 0;
priv.elements[i].tag = TAG_RSA_MODULUS;
priv.elements[i].length = BN_num_bytes(rsa->n);
BN_bn2bin(rsa->n, bufs[i]);
priv.elements[i].data = bufs[i];
i++;
priv.elements[i].tag = TAG_RSA_PUBLICEXPONENT;
priv.elements[i].length = BN_num_bytes(rsa->e);
BN_bn2bin(rsa->e, bufs[i]);
priv.elements[i].data = bufs[i];
i++;
if (rsa->d != NULL) {
priv.elements[i].tag = TAG_RSA_PRIVATEEXPONENT;
priv.elements[i].length = BN_num_bytes(rsa->d);
BN_bn2bin(rsa->d, bufs[i]);
priv.elements[i].data = bufs[i];
i++;
}
if (rsa->p != NULL) {
priv.elements[i].tag = TAG_RSA_PRIME1;
priv.elements[i].length = BN_num_bytes(rsa->p);
BN_bn2bin(rsa->p, bufs[i]);
priv.elements[i].data = bufs[i];
i++;
}
if (rsa->q != NULL) {
priv.elements[i].tag = TAG_RSA_PRIME2;
priv.elements[i].length = BN_num_bytes(rsa->q);
BN_bn2bin(rsa->q, bufs[i]);
priv.elements[i].data = bufs[i];
i++;
}
if (rsa->dmp1 != NULL) {
priv.elements[i].tag = TAG_RSA_EXPONENT1;
priv.elements[i].length = BN_num_bytes(rsa->dmp1);
BN_bn2bin(rsa->dmp1, bufs[i]);
priv.elements[i].data = bufs[i];
i++;
}
if (rsa->dmq1 != NULL) {
priv.elements[i].tag = TAG_RSA_EXPONENT2;
priv.elements[i].length = BN_num_bytes(rsa->dmq1);
BN_bn2bin(rsa->dmq1, bufs[i]);
priv.elements[i].data = bufs[i];
i++;
}
if (rsa->iqmp != NULL) {
priv.elements[i].tag = TAG_RSA_COEFFICIENT;
priv.elements[i].length = BN_num_bytes(rsa->iqmp);
BN_bn2bin(rsa->iqmp, bufs[i]);
priv.elements[i].data = bufs[i];
i++;
}
if (key->engine != NULL) {
priv.elements[i].tag = TAG_RSA_ENGINE;
priv.elements[i].length = strlen(key->engine) + 1;
priv.elements[i].data = (unsigned char *)key->engine;
i++;
}
if (key->label != NULL) {
priv.elements[i].tag = TAG_RSA_LABEL;
priv.elements[i].length = strlen(key->label) + 1;
priv.elements[i].data = (unsigned char *)key->label;
i++;
}
priv.nelements = i;
result = dst__privstruct_writefile(key, &priv, directory);
fail:
#if USE_EVP
RSA_free(rsa);
#endif
for (i = 0; i < 8; i++) {
if (bufs[i] == NULL)
break;
isc_mem_put(key->mctx, bufs[i], BN_num_bytes(rsa->n));
}
return (result);
}
static isc_result_t
rsa_check(RSA *rsa, RSA *pub)
{
/* Public parameters should be the same but if they are not set
* copy them from the public key. */
if (pub != NULL) {
if (rsa->n != NULL) {
if (BN_cmp(rsa->n, pub->n) != 0)
return (DST_R_INVALIDPRIVATEKEY);
} else {
rsa->n = pub->n;
pub->n = NULL;
}
if (rsa->e != NULL) {
if (BN_cmp(rsa->e, pub->e) != 0)
return (DST_R_INVALIDPRIVATEKEY);
} else {
rsa->e = pub->e;
pub->e = NULL;
}
}
if (rsa->n == NULL || rsa->e == NULL)
return (DST_R_INVALIDPRIVATEKEY);
return (ISC_R_SUCCESS);
}
static isc_result_t
opensslrsa_parse(dst_key_t *key, isc_lex_t *lexer, dst_key_t *pub) {
dst_private_t priv;
isc_result_t ret;
int i;
RSA *rsa = NULL, *pubrsa = NULL;
ENGINE *e = NULL;
isc_mem_t *mctx = key->mctx;
const char *engine = NULL, *label = NULL;
EVP_PKEY *pkey = NULL;
#if USE_EVP
if (pub != NULL && pub->keydata.pkey != NULL)
pubrsa = EVP_PKEY_get1_RSA(pub->keydata.pkey);
#else
if (pub != NULL && pub->keydata.rsa != NULL) {
pubrsa = pub->keydata.rsa;
pub->keydata.rsa = NULL;
}
#endif
/* read private key file */
ret = dst__privstruct_parse(key, DST_ALG_RSA, lexer, mctx, &priv);
if (ret != ISC_R_SUCCESS)
return (ret);
for (i = 0; i < priv.nelements; i++) {
switch (priv.elements[i].tag) {
case TAG_RSA_ENGINE:
engine = (char *)priv.elements[i].data;
break;
case TAG_RSA_LABEL:
label = (char *)priv.elements[i].data;
break;
default:
break;
}
}
/*
* Is this key is stored in a HSM?
* See if we can fetch it.
*/
if (label != NULL) {
if (engine == NULL)
DST_RET(DST_R_NOENGINE);
e = dst__openssl_getengine(engine);
if (e == NULL)
DST_RET(DST_R_NOENGINE);
pkey = ENGINE_load_private_key(e, label, NULL, NULL);
if (pkey == NULL) {
/* ERR_print_errors_fp(stderr); */
DST_RET(ISC_R_NOTFOUND);
}
key->engine = isc_mem_strdup(key->mctx, engine);
if (key->engine == NULL)
DST_RET(ISC_R_NOMEMORY);
key->label = isc_mem_strdup(key->mctx, label);
if (key->label == NULL)
DST_RET(ISC_R_NOMEMORY);
rsa = EVP_PKEY_get1_RSA(pkey);
if (rsa == NULL)
DST_RET(dst__openssl_toresult(DST_R_OPENSSLFAILURE));
if (rsa_check(rsa, pubrsa) != ISC_R_SUCCESS)
DST_RET(DST_R_INVALIDPRIVATEKEY);
if (pubrsa != NULL)
RSA_free(pubrsa);
key->key_size = EVP_PKEY_bits(pkey);
#if USE_EVP
key->keydata.pkey = pkey;
RSA_free(rsa);
#else
key->keydata.rsa = rsa;
EVP_PKEY_free(pkey);
#endif
dst__privstruct_free(&priv, mctx);
memset(&priv, 0, sizeof(priv));
return (ISC_R_SUCCESS);
}
rsa = RSA_new();
if (rsa == NULL)
DST_RET(ISC_R_NOMEMORY);
SET_FLAGS(rsa);
#if USE_EVP
pkey = EVP_PKEY_new();
if (pkey == NULL)
DST_RET(ISC_R_NOMEMORY);
if (!EVP_PKEY_set1_RSA(pkey, rsa))
DST_RET(ISC_R_FAILURE);
key->keydata.pkey = pkey;
#else
key->keydata.rsa = rsa;
#endif
for (i = 0; i < priv.nelements; i++) {
BIGNUM *bn;
switch (priv.elements[i].tag) {
case TAG_RSA_ENGINE:
continue;
case TAG_RSA_LABEL:
continue;
case TAG_RSA_PIN:
continue;
default:
bn = BN_bin2bn(priv.elements[i].data,
priv.elements[i].length, NULL);
if (bn == NULL)
DST_RET(ISC_R_NOMEMORY);
}
switch (priv.elements[i].tag) {
case TAG_RSA_MODULUS:
rsa->n = bn;
break;
case TAG_RSA_PUBLICEXPONENT:
rsa->e = bn;
break;
case TAG_RSA_PRIVATEEXPONENT:
rsa->d = bn;
break;
case TAG_RSA_PRIME1:
rsa->p = bn;
break;
case TAG_RSA_PRIME2:
rsa->q = bn;
break;
case TAG_RSA_EXPONENT1:
rsa->dmp1 = bn;
break;
case TAG_RSA_EXPONENT2:
rsa->dmq1 = bn;
break;
case TAG_RSA_COEFFICIENT:
rsa->iqmp = bn;
break;
}
}
dst__privstruct_free(&priv, mctx);
memset(&priv, 0, sizeof(priv));
if (rsa_check(rsa, pubrsa) != ISC_R_SUCCESS)
DST_RET(DST_R_INVALIDPRIVATEKEY);
key->key_size = BN_num_bits(rsa->n);
if (pubrsa != NULL)
RSA_free(pubrsa);
#if USE_EVP
RSA_free(rsa);
#endif
return (ISC_R_SUCCESS);
err:
#if USE_EVP
if (pkey != NULL)
EVP_PKEY_free(pkey);
#endif
if (rsa != NULL)
RSA_free(rsa);
if (pubrsa != NULL)
RSA_free(pubrsa);
opensslrsa_destroy(key);
dst__privstruct_free(&priv, mctx);
memset(&priv, 0, sizeof(priv));
return (ret);
}
static isc_result_t
opensslrsa_fromlabel(dst_key_t *key, const char *engine, const char *label,
const char *pin)
{
ENGINE *e = NULL;
isc_result_t ret;
EVP_PKEY *pkey = NULL;
RSA *rsa = NULL, *pubrsa = NULL;
char *colon;
UNUSED(pin);
if (engine == NULL)
DST_RET(DST_R_NOENGINE);
e = dst__openssl_getengine(engine);
if (e == NULL)
DST_RET(DST_R_NOENGINE);
pkey = ENGINE_load_public_key(e, label, NULL, NULL);
if (pkey != NULL) {
pubrsa = EVP_PKEY_get1_RSA(pkey);
EVP_PKEY_free(pkey);
if (pubrsa == NULL)
DST_RET(dst__openssl_toresult(DST_R_OPENSSLFAILURE));
}
pkey = ENGINE_load_private_key(e, label, NULL, NULL);
if (pkey == NULL)
DST_RET(ISC_R_NOTFOUND);
if (engine != NULL) {
key->engine = isc_mem_strdup(key->mctx, engine);
if (key->engine == NULL)
DST_RET(ISC_R_NOMEMORY);
} else {
key->engine = isc_mem_strdup(key->mctx, label);
if (key->engine == NULL)
DST_RET(ISC_R_NOMEMORY);
colon = strchr(key->engine, ':');
if (colon != NULL)
*colon = '\0';
}
key->label = isc_mem_strdup(key->mctx, label);
if (key->label == NULL)
DST_RET(ISC_R_NOMEMORY);
rsa = EVP_PKEY_get1_RSA(pkey);
if (rsa == NULL)
DST_RET(dst__openssl_toresult(DST_R_OPENSSLFAILURE));
if (rsa_check(rsa, pubrsa) != ISC_R_SUCCESS)
DST_RET(DST_R_INVALIDPRIVATEKEY);
if (pubrsa != NULL)
RSA_free(pubrsa);
key->key_size = EVP_PKEY_bits(pkey);
#if USE_EVP
key->keydata.pkey = pkey;
RSA_free(rsa);
#else
key->keydata.rsa = rsa;
EVP_PKEY_free(pkey);
#endif
return (ISC_R_SUCCESS);
err:
if (rsa != NULL)
RSA_free(rsa);
if (pubrsa != NULL)
RSA_free(pubrsa);
if (pkey != NULL)
EVP_PKEY_free(pkey);
return (ret);
}
static dst_func_t opensslrsa_functions = {
opensslrsa_createctx,
opensslrsa_destroyctx,
opensslrsa_adddata,
opensslrsa_sign,
opensslrsa_verify,
NULL, /*%< computesecret */
opensslrsa_compare,
NULL, /*%< paramcompare */
opensslrsa_generate,
opensslrsa_isprivate,
opensslrsa_destroy,
opensslrsa_todns,
opensslrsa_fromdns,
opensslrsa_tofile,
opensslrsa_parse,
NULL, /*%< cleanup */
opensslrsa_fromlabel,
NULL, /*%< dump */
NULL, /*%< restore */
};
isc_result_t
dst__opensslrsa_init(dst_func_t **funcp, unsigned char algorithm) {
REQUIRE(funcp != NULL);
if (*funcp == NULL) {
switch (algorithm) {
case DST_ALG_RSASHA256:
#if defined(HAVE_EVP_SHA256) || !USE_EVP
*funcp = &opensslrsa_functions;
#endif
break;
case DST_ALG_RSASHA512:
#if defined(HAVE_EVP_SHA512) || !USE_EVP
*funcp = &opensslrsa_functions;
#endif
break;
default:
*funcp = &opensslrsa_functions;
break;
}
}
return (ISC_R_SUCCESS);
}
#else /* OPENSSL */
#include <isc/util.h>
EMPTY_TRANSLATION_UNIT
#endif /* OPENSSL */
/*! \file */