sum-sha1.c revision 3f54fd611f536639ec30dd53c48e5ec1897cc7d9
#pragma prototyped
/*
* SHA-1 in C
* By Steve Reid <steve@edmweb.com>
* 100% Public Domain
*
* Test Vectors (from FIPS PUB 180-1)
* "abc"
* A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
* "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
* 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
* A million repetitions of "a"
* 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
*/
#define sha1_description "FIPS 180-1 SHA-1 secure hash algorithm 1."
#define sha1_options "[+(version)?sha1 (FIPS 180-1) 1996-09-26]\
[+(author)?Steve Reid <steve@edmweb.com>]"
#define sha1_match "sha1|SHA1|sha-1|SHA-1"
#define sha1_scale 0
#define sha1_padding md5_pad
typedef struct Sha1_s
{
_SUM_PUBLIC_
_SUM_PRIVATE_
uint32_t count[2];
uint32_t state[5];
uint8_t buffer[64];
uint8_t digest[20];
uint8_t digest_sum[20];
} Sha1_t;
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
/*
* blk0() and blk() perform the initial expand.
* I got the idea of expanding during the round function from SSLeay
*/
#if _ast_intswap
# define blk0(i) \
(block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) \
| (rol(block->l[i], 8) & 0x00FF00FF))
#else
# define blk0(i) block->l[i]
#endif
#define blk(i) \
(block->l[i & 15] = rol(block->l[(i + 13) & 15] \
^ block->l[(i + 8) & 15] \
^ block->l[(i + 2) & 15] \
^ block->l[i & 15], 1))
/*
* (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
*/
#define R0(v,w,x,y,z,i) \
z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \
w = rol(w, 30);
#define R1(v,w,x,y,z,i) \
z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \
w = rol(w, 30);
#define R2(v,w,x,y,z,i) \
z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); \
w = rol(w, 30);
#define R3(v,w,x,y,z,i) \
z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \
w = rol(w, 30);
#define R4(v,w,x,y,z,i) \
z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \
w = rol(w, 30);
typedef union {
unsigned char c[64];
unsigned int l[16];
} CHAR64LONG16;
#ifdef __sparc_v9__
static void do_R01(uint32_t *a, uint32_t *b, uint32_t *c,
uint32_t *d, uint32_t *e, CHAR64LONG16 *);
static void do_R2(uint32_t *a, uint32_t *b, uint32_t *c,
uint32_t *d, uint32_t *e, CHAR64LONG16 *);
static void do_R3(uint32_t *a, uint32_t *b, uint32_t *c,
uint32_t *d, uint32_t *e, CHAR64LONG16 *);
static void do_R4(uint32_t *a, uint32_t *b, uint32_t *c,
uint32_t *d, uint32_t *e, CHAR64LONG16 *);
#define nR0(v,w,x,y,z,i) R0(*v,*w,*x,*y,*z,i)
#define nR1(v,w,x,y,z,i) R1(*v,*w,*x,*y,*z,i)
#define nR2(v,w,x,y,z,i) R2(*v,*w,*x,*y,*z,i)
#define nR3(v,w,x,y,z,i) R3(*v,*w,*x,*y,*z,i)
#define nR4(v,w,x,y,z,i) R4(*v,*w,*x,*y,*z,i)
static void
do_R01(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
uint32_t *e, CHAR64LONG16 *block)
{
nR0(a,b,c,d,e, 0); nR0(e,a,b,c,d, 1); nR0(d,e,a,b,c, 2);
nR0(c,d,e,a,b, 3); nR0(b,c,d,e,a, 4); nR0(a,b,c,d,e, 5);
nR0(e,a,b,c,d, 6); nR0(d,e,a,b,c, 7); nR0(c,d,e,a,b, 8);
nR0(b,c,d,e,a, 9); nR0(a,b,c,d,e,10); nR0(e,a,b,c,d,11);
nR0(d,e,a,b,c,12); nR0(c,d,e,a,b,13); nR0(b,c,d,e,a,14);
nR0(a,b,c,d,e,15); nR1(e,a,b,c,d,16); nR1(d,e,a,b,c,17);
nR1(c,d,e,a,b,18); nR1(b,c,d,e,a,19);
}
static void
do_R2(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
uint32_t *e, CHAR64LONG16 *block)
{
nR2(a,b,c,d,e,20); nR2(e,a,b,c,d,21); nR2(d,e,a,b,c,22);
nR2(c,d,e,a,b,23); nR2(b,c,d,e,a,24); nR2(a,b,c,d,e,25);
nR2(e,a,b,c,d,26); nR2(d,e,a,b,c,27); nR2(c,d,e,a,b,28);
nR2(b,c,d,e,a,29); nR2(a,b,c,d,e,30); nR2(e,a,b,c,d,31);
nR2(d,e,a,b,c,32); nR2(c,d,e,a,b,33); nR2(b,c,d,e,a,34);
nR2(a,b,c,d,e,35); nR2(e,a,b,c,d,36); nR2(d,e,a,b,c,37);
nR2(c,d,e,a,b,38); nR2(b,c,d,e,a,39);
}
static void
do_R3(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
uint32_t *e, CHAR64LONG16 *block)
{
nR3(a,b,c,d,e,40); nR3(e,a,b,c,d,41); nR3(d,e,a,b,c,42);
nR3(c,d,e,a,b,43); nR3(b,c,d,e,a,44); nR3(a,b,c,d,e,45);
nR3(e,a,b,c,d,46); nR3(d,e,a,b,c,47); nR3(c,d,e,a,b,48);
nR3(b,c,d,e,a,49); nR3(a,b,c,d,e,50); nR3(e,a,b,c,d,51);
nR3(d,e,a,b,c,52); nR3(c,d,e,a,b,53); nR3(b,c,d,e,a,54);
nR3(a,b,c,d,e,55); nR3(e,a,b,c,d,56); nR3(d,e,a,b,c,57);
nR3(c,d,e,a,b,58); nR3(b,c,d,e,a,59);
}
static void
do_R4(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
uint32_t *e, CHAR64LONG16 *block)
{
nR4(a,b,c,d,e,60); nR4(e,a,b,c,d,61); nR4(d,e,a,b,c,62);
nR4(c,d,e,a,b,63); nR4(b,c,d,e,a,64); nR4(a,b,c,d,e,65);
nR4(e,a,b,c,d,66); nR4(d,e,a,b,c,67); nR4(c,d,e,a,b,68);
nR4(b,c,d,e,a,69); nR4(a,b,c,d,e,70); nR4(e,a,b,c,d,71);
nR4(d,e,a,b,c,72); nR4(c,d,e,a,b,73); nR4(b,c,d,e,a,74);
nR4(a,b,c,d,e,75); nR4(e,a,b,c,d,76); nR4(d,e,a,b,c,77);
nR4(c,d,e,a,b,78); nR4(b,c,d,e,a,79);
}
#endif
/*
* Hash a single 512-bit block. This is the core of the algorithm.
*/
static void
sha1_transform(uint32_t state[5], const unsigned char buffer[64]) {
uint32_t a, b, c, d, e;
CHAR64LONG16 *block;
CHAR64LONG16 workspace;
block = &workspace;
(void)memcpy(block, buffer, 64);
/* Copy sha->state[] to working vars */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
#ifdef __sparc_v9__
do_R01(&a, &b, &c, &d, &e, block);
do_R2(&a, &b, &c, &d, &e, block);
do_R3(&a, &b, &c, &d, &e, block);
do_R4(&a, &b, &c, &d, &e, block);
#else
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
#endif
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
/* Wipe variables */
a = b = c = d = e = 0;
}
static int
sha1_block(register Sum_t* p, const void* s, size_t len)
{
Sha1_t* sha = (Sha1_t*)p;
uint8_t* data = (uint8_t*)s;
unsigned int i, j;
if (len) {
j = sha->count[0];
if ((sha->count[0] += len << 3) < j)
sha->count[1] += (len >> 29) + 1;
j = (j >> 3) & 63;
if ((j + len) > 63) {
(void)memcpy(&sha->buffer[j], data, (i = 64 - j));
sha1_transform(sha->state, sha->buffer);
for ( ; i + 63 < len; i += 64)
sha1_transform(sha->state, &data[i]);
j = 0;
} else {
i = 0;
}
(void)memcpy(&sha->buffer[j], &data[i], len - i);
}
return 0;
}
static int
sha1_init(Sum_t* p)
{
register Sha1_t* sha = (Sha1_t*)p;
sha->count[0] = sha->count[1] = 0;
sha->state[0] = 0x67452301;
sha->state[1] = 0xEFCDAB89;
sha->state[2] = 0x98BADCFE;
sha->state[3] = 0x10325476;
sha->state[4] = 0xC3D2E1F0;
return 0;
}
static Sum_t*
sha1_open(const Method_t* method, const char* name)
{
Sha1_t* sha;
if (sha = newof(0, Sha1_t, 1, 0))
{
sha->method = (Method_t*)method;
sha->name = name;
sha1_init((Sum_t*)sha);
}
return (Sum_t*)sha;
}
/*
* Add padding and return the message digest.
*/
static const unsigned char final_200 = 128;
static const unsigned char final_0 = 0;
static int
sha1_done(Sum_t* p)
{
Sha1_t* sha = (Sha1_t*)p;
unsigned int i;
unsigned char finalcount[8];
for (i = 0; i < 8; i++) {
/* Endian independent */
finalcount[i] = (unsigned char)
((sha->count[(i >= 4 ? 0 : 1)]
>> ((3 - (i & 3)) * 8)) & 255);
}
sha1_block(p, &final_200, 1);
while ((sha->count[0] & 504) != 448)
sha1_block(p, &final_0, 1);
/* The next Update should cause a sha1_transform() */
sha1_block(p, finalcount, 8);
for (i = 0; i < elementsof(sha->digest); i++)
{
sha->digest[i] = (unsigned char)((sha->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255);
sha->digest_sum[i] ^= sha->digest[i];
}
memset(sha->count, 0, sizeof(sha->count));
memset(sha->state, 0, sizeof(sha->state));
memset(sha->buffer, 0, sizeof(sha->buffer));
return 0;
}
static int
sha1_print(Sum_t* p, Sfio_t* sp, register int flags, size_t scale)
{
register Sha1_t* sha = (Sha1_t*)p;
register unsigned char* d;
register int n;
d = (flags & SUM_TOTAL) ? sha->digest_sum : sha->digest;
for (n = 0; n < elementsof(sha->digest); n++)
sfprintf(sp, "%02x", d[n]);
return 0;
}
static int
sha1_data(Sum_t* p, Sumdata_t* data)
{
register Sha1_t* sha = (Sha1_t*)p;
data->size = elementsof(sha->digest);
data->num = 0;
data->buf = sha->digest;
return 0;
}