Searched refs:square (Results 1 - 17 of 17) sorted by relevance

/osnet-11/usr/src/cmd/perl/5.8.4/distrib/lib/unicore/
H A DDecomposition.pl1825 3250 <square> 0050 0054 0045
1947 32CC <square> 0048 0067
1948 32CD <square> 0065 0072 0067
1949 32CE <square> 0065 0056
1950 32CF <square> 004C 0054 0044
1998 3300 <square> 30A2 30D1 30FC 30C8
1999 3301 <square> 30A2 30EB 30D5 30A1
2000 3302 <square> 30A2 30F3 30DA 30A2
2001 3303 <square> 30A2 30FC 30EB
2002 3304 <square> 3
[all...]
/osnet-11/usr/src/cmd/perl/5.8.4/distrib/ext/Encode/JP/
H A DJP.pm80 to U+3013 (0xA2AE in EUC-JP; a white square also known as 'Tofu' or
/osnet-11/usr/src/cmd/perl/5.8.4/distrib/lib/
H A Dinteger.pm57 square root of 2. Now, it so happens that the pre- and post- increment
H A DMemoize.pm907 sub square {
914 C<square> function.
/osnet-11/usr/src/cmd/perl/5.8.4/distrib/lib/Net/
H A DNNTP.pm1061 or end of the set. This set is enclosed in square brackets. The
1062 close square bracket C<]> may be used in a set if it is the first
1068 the beginning of the test string just inside the open square
1072 invalidate the special meaning of an open square bracket C<[>,
1083 matches any single character other than a close square
/osnet-11/usr/src/lib/libdtrace/common/
H A Ddt_consume.c245 * This is the long-hand method of calculating a square root.
250 * whose square is less than that group.
257 * The value x is the next digit in the square root.
261 * In decimal, the square root of 582,734 would be calculated as so:
265 * -49 (7^2 == 49 => 7 is the first digit in the square root)
269 * ----- the square root)
272 * ----- the square root)
280 * In binary, the square root of 11011011 would be calculated as so:
297 dt_sqrt_128(uint64_t *square) argument
307 bit_pairs = dt_nbits_128(square) /
[all...]
/osnet-11/usr/src/cmd/perl/5.8.4/distrib/lib/Pod/
H A DFunctions.pm337 sqrt Math square root function
H A DSelect.pm175 Where each the item inside square brackets (the ".." followed by the
/osnet-11/usr/src/common/mpi/
H A Dmpi.c1084 Computes the square of a. This can be done more
1301 standard iterative square-and-multiply technique.
1487 Compute the integer square root of a, and store the result in b.
1505 /* Cannot take square root of a negative value */
1671 Compute c = (a ** b) mod m. Uses a standard square-and-multiply
4219 { unsigned long long square = (unsigned long long)a * a; \
4220 Plo = (mp_digit)square; \
4221 Phi = (mp_digit)(square >> MP_DIGIT_BIT); }
/osnet-11/usr/src/cmd/perl/5.8.4/distrib/lib/Math/
H A DBigInt.pm1923 # calculate square root of $x
2647 $x->bsqrt(); # calculate square-root
3135 $x->bsqrt(); # calculate square-root
4221 C<bsqrt()> works only good if the result is a big integer, e.g. the square
4222 root of 144 is 12, but from 12 the square root is 3, regardless of rounding
4225 If you want a better approximation of the square root, then use:
H A DBigRat.pm1491 Calculate the square root of $x.
H A DComplex.pm1579 For instance, the C<sqrt> routine which computes the square root of
/osnet-11/usr/src/cmd/perl/5.8.4/distrib/lib/Math/BigInt/
H A DCalc.pm1464 # square-root of $x in place
2061 _sqrt(obj) return the square root of object (truncated to int)
/osnet-11/usr/src/grub/grub-0.97/docs/
H A Dtexinfo.tex5507 \errmessage{Unbalanced square braces in @def}%
5935 % Use the node name inside the square brackets.
5939 % the square brackets. Use the real section title if we have it.
6035 % since square brackets don't work well in some documents. Particularly
/osnet-11/usr/src/cmd/perl/5.8.4/distrib/
H A Dconfig_h.SH2796 * available to do long double square roots.
H A Dtoke.c2436 yyerror("Missing right curly or square bracket");
3129 yyerror("Unmatched right square bracket");
/osnet-11/usr/src/grub/grub2/docs/
H A Dtexinfo.tex6512 \message{Warning: unbalanced square brackets in @def...}%
6931 % Use the node name inside the square brackets.
6935 % the square brackets. Use the real section title if we have it.
7035 % since square brackets don't work well in some documents. Particularly

Completed in 328 milliseconds